
CAPS

INFORMATION
TECHNOLOGY
INFORMATION
TECHNOLOGY
INFORMATION
TECHNOLOGY

Practical Book

2706 IT & CAT Title Page.indd 1 2018/11/01 10:42

IT-Practical-LB-Gr10 INK06.indb 1 2019/09/26 09:53

MTN South Africa, through MTN SA Foundation, is a proud supporter of the CAT and IT digital books.

As an organisation rooted in technology, we believe in providing a new bold digital world to communities we

operate in. This unique digital book provides the fundamental knowledge necessary for a sound grounding

from which to make practical use of the complete and indispensable application-oriented information

regarding Computer Applications Technology (CAT) and Information Technology (IT). It is a foundational

reference for today’s secondary school learners and teachers alike - as well as for the next generation of CAT

and IT students.

Information Technology Practical Book Grade 10

ISBN 978-1-928388-50-0

First published in 2019 © 2019. Copyright in the text remains with the contributors.

Quality Assurance team for Information Technology

Allison Philander, Carina Labuscagne, David Peens, Denise van Wyk, Edward Gentle,
Jugdeshchand Sewnanen, Julian Carstens, Magdalena Brits, Shamiel Dramat,

Shani Nunkumar and Zainab Karriem

Restrictions

You may not make copies of this book in part or in full – in printed or electronic
or audio or video form – for a pro� t seeking purpose.

Rights of other copyright holders

All reasonable efforts have been made to ensure that materials included are not already copyrighted to other
entities, or in a small number of cases, to seek permission from and acknowledge copyright holders. In some

cases, this may not have been possible. The publishers welcome the opportunity to redress this with any
unacknowledged copyright holders.

IT-Practical-LB-Gr10 INK06.indb 2 2019/09/26 09:53

Contents
Term 1

 Chapter 1 Algorithms

Introduction ... 1

Unit 1.1 Basics of algorithms ... 2

Unit 1.2 Algorithm quality ... 4

Unit 1.3 Creating algorithms .. 7

Unit 1.4 Flowcharts .. 9

Chapter Overview... 12

Consolidation activity.. 13

 Chapter 2 Delphi

Introduction ... 15
Unit 2.1 Opening Delphi and exploring the Delphi IDE 16

Unit. 2.2 Components and properties .. 20

Unit 2.3 Creating a simple Delphi project ... 22

Unit 2.4 Events .. 26

Unit 2.5 Syntax .. 31

Consolidation .. 33

Consolidation activities ... 34

 Chapter 3 Variables And Components

Introduction ... 35

Unit 3.1 Data types .. 37

Unit 3.2 Variable and component names .. 39

Unit 3.3 Declaring variables and Components 41

Unit 3.4 Assigning values to variables .. 45

Unit 3.5 Converting data types ... 49

Unit 3.6 Errors .. 54

Consolidation .. 57

Consolidation activities ... 58

 Chapter 4 Solving basic mathematical problems
using Delphi

Introduction ... 61

Unit 4.1 Basic operators ... 62

Unit 4.2 Formatting numbers.. 69

Unit 4.3 Mathematical functions .. 72

Unit 4.4 Variable scope .. 78

Consolidation .. 81

Consolidation activities ... 82

TERM 2

 Chapter 5 Decision making

Introduction ... 87

Unit 5.1 Decisions in algorithms .. 89

Unit 5.2 Boolean expressions and the If-then statement 92

Unit 5.3 Boolean operators .. 102

Unit 5.4 If-then-else statement ... 111

Unit 5.5 Nested if-then statements ... 117

Unit 5.6 Case statements... 122

Chapter Overview... 127

Consolidation activities ... 128

 Chapter 6 Validating data

Introduction ... 131

Unit 6.1 String comparison .. 133

Unit 6.2 Validating data .. 137

Unit 6.3 IN operator .. 141

Consolidation .. 146

Consolidation questions .. 147

TERM 3

 Chapter 7 Repetition

Introduction ... 149

Unit 7.1 Using the listbox and combobox components 151

Unit 7.2 Repetition concepts .. 158

Unit 7.3 FOR…Do loop .. 162

Unit 7.4 Looping with components... 170

Unit 7.5 Using the Input box ... 173

Unit 7.6 REPEAT…UNTIL loop .. 176

Unit 7.7 While…do loop.. 182

Unit 7.8 Apply Loop Structures .. 190

Unit 7.9 Initialising variables using the onshow event................. 192

Unit 7.10 Timers .. 193

Summary ... 200

Consolidation activities ... 202

 Chapter 8 String manipulation

Introduction ... 207

Unit 8.1 Combining strings and determining the length
of a string ... 208

Unit 8.2 Formatting strings ... 217

Unit 8.3 Scrolling through a string ... 220

Unit 8.4 Manipulating strings .. 230

Summary ... 248

Consolidation activities ... 249

TERM 4

 Chapter 9 PAT preparation

Introduction ... 253

Unit 9.1 Tools and techniques to create a software
solution to a problem ... 255

Unit 9.2 A problem-solving approach .. 262

Unit 9.3 Analysing user interfaces .. 265

Consolidation .. 270

Annexure A 271

Annexure B 275

Annexure C 277

Glossary 278

QR Code list 280

IT-Practical-LB-Gr10 INK06.indb 3 2019/09/26 09:53

Dear Learner
 Welcome to the IT Practical Grade 10 textbook, and welcome to programming.

If this is your � rst time learning how to program, don’t worry. This textbook has been designed to teach anyone –
regardless of experience – how to program. If you follow along with all the examples then you will be an
experienced programmer who has written more than 50 programs by the end of this book.

Programming and programming languages, much like real languages, can only be learned through practice.
You cannot sit at home and learn to speak French from a textbook. In the same way, you cannot read this book
and hope to be a programmer at the end of it. Instead, you will need to write every bit of code and create every
program shown in this book. Even if all you do is follow the steps of the examples on your own computer, you
will learn how to write code. Once you have mastered the code, you will be able to comfortably use it in your
own programs.

For you to master programming, try to work through as many of the programs given to you. Each program has
been designed to both teach you new concepts and reinforce existing concepts. The book will start by teaching
you how to create simple programs. However, by the end of the book you will be creating useful programs and
fun games to play.

Programming is not only about knowing and using the programming language. There are also important
theoretical concepts that you will need to understand, and planning and problem-solving tools that you will need
to master. The best-coded program in the world will not be useful if it solves the wrong problem. This book has
therefore been divided into the following chapters:
● Chapter 1: Algorithms
● Chapter 2: Delphi
● Chapter 3: Variables and components
● Chapter 4: Solving basic mathematical problems using Delphi
● Chapter 5: Decision making
● Chapter 6: Validating data
● Chapter 7: Repetition
● Chapter 8: String manipulation
● Chapter 9: PAT preparation

Before getting started with algorithms, watch the video in the QR code.

WHAT MOST SCHOOLS
DON’T TEACH

https://www.youtube.com/
watch?v=nKIu9yen5nc

IT-Practical-LB-Gr10 INK06.indb 4 2019/09/26 09:53

To give you the most opportunities to learn, this book will give three types of programming activities:

Activities

Activities are programs that your teacher can give to you as classroom activities or homework. With these
programs, you will only be assessed on how well your program works, so use your creativity to come up with
a solution!

3TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.1 Basics of algorithms

Activity 1.1

1.1.1 Follow each step exactly and in the sequence indicated. Do not look at your classmates’ drawings and do not
speak to one another. Use your own interpretation of the instructions.

a. Draw a diagonal line.

b. Draw another diagonal line connected to the top of the � rst one.

c. Draw a straight line from the point where the diagonal lines meet.

d. Draw a horizontal line over the straight line.

e. At the bottom of the straight line, draw a curvy line.

f. Draw a diagonal line for the bottom of the � rst diagonal to the straight line.

g. Draw a diagonal line from the bottom of the second diagonal to the straight line.

1.1.2 Compare your picture with your partner’s.

a. Are your pictures different?

b. Can you explain why?

c. What was dif� cult about following the instructions?

d. What was missing from the instructions?

1.1.3 Write down the criteria that a well-designed algorithm should meet.

Your teacher will tell you what the object was that you should have drawn.
Once you know this, write a set of instructions that someone could follow
to draw the object. Make sure that:
● there is only one way to interpret each step, that is, the instructions

are unambiguous
● you provide enough detail in each step.

Activity 1.2

Write instructions (or an algorithm) that will enable someone to make a paper shape from one sheet of A4 paper.

Once your instructions (algorithm) are complete, swap them with another learner and test if it was easy to follow.
Answer the following questions.

1.2.1 Were the instructions easy to follow? Did it work?

1.2.2 If the instructions did not work, where did your classmate go wrong?

1.2.3 a. What do you need to do to � x it?

b. Adjust the instructions.

Activity 1.3

Write down instructions on how to do the following physical activities. Each activity must have at least � ve steps that
are properly explained.

1.3.1 How you make coffee.

1.3.2 How you do a sit-up.

1.3.3 How to buy a packet of chips at the tuckshop using a R100-note.

1.3.4 How you travel from your house to your school.

In the next unit we will explore different qualities that can help us determine whether the quality of an
algorithm is good.

Did you know

You may have discovered
that good instructions/
algorithms that work on a
� rst try are hard to develop.

Examples

Examples will guide you through the creation of a program from start to � nish. All you need to do with examples
is to follow the step-by-step guidance provided to you.

Guided activities

Guided activities have a program
that you need to create on your
own. Your teacher will provide
you with the solution. These
solutions should be used as an
opportunity to compare your
program, and to see where you
may have made errors or left
something out.

2 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In this unit you will look at some of the basics of creating algorithms. While there are no speci� c rules about
how to write an algorithm, once it is complete it should meet the following criteria:
● there must be a limited number of steps
● the steps must be:

 easy to understand and follow
 detailed and speci� c
 clear and unambiguous

● each step should:
 consist of a single task
 be at the most basic level that cannot be broken into simpler tasks

● all repetitions must have clear ending conditions
● there must be at least one result (or output).

Look at the following example to help you understand the importance of following a list of instructions.

Example 1.1 Making hot chocolate

Most people have a speci� c way they prefer to drink their hot chocolate. The algorithm below describes one way to
make hot chocolate.

1. Fetch a cup from the cupboard.

2. Place the cup on the counter.

3. Add water to the kettle until there is 500 ml of water in the kettle.

4. Turn on the kettle.

5. Add four teaspoons of hot chocolate to the cup.

6. Add 30 ml of milk to the cup.

7. Add one teaspoon of sugar to the cup.

8. Stir the mixture for 10 seconds.

9. Add boiling water to the cup until the cup is 95% full.

10. Stir the mixture for 10 more seconds.

11. Your hot chocolate is now ready to drink!

By following this algorithm, you should be able to make a cup of hot chocolate. However, this hot chocolate
might not be exactly to your taste. Think and talk to your friend about how your algorithm for making hot
chocolate (or coffee or tea) would be different to the one in the example.

CREATING BASIC ALGORITHMS
Most algorithms can be broken into smaller steps that use algorithms designed for each of the smaller
steps. For example, in the hot chocolate algorithm above, you could create an algorithm that describes
how to open the cupboard, how to select a cup, how to open the hot chocolate container, and so forth.
This algorithm could end up being hundreds of lines long!

To prevent this, you need to focus on completing a speci� c task without going into detail for
each sub-task.

But let’s begin by seeing how well you can follow instructions.

New words

unambiguous – not open
to more than one
interpretation

Basics of algorithms1.1

UNIT

5TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.2 Algorithm quality

While this algorithm is more dif� cult to create, it is a lot easier to follow and is much more likely to deliver
a tasty cake. Even if you have never baked a cake before, you should be able to use this algorithm. If you
follow the instructions, the cake should always be a success. This algorithm can thus be called a high

precision algorithm.

 ORDER
Order refers to the total number of steps needed (including repeats) to complete an algorithm. The order
of an algorithm is usually shown as a mathematical formula based on the number of inputs. Order will have
a signi� cant effect on the time it takes to complete an algorithm, especially when working with large
numbers of items.

For example, if you have an algorithm to choose what you will wear each morning and you only have a
single pair of pants, then you will only need to make one decision (wear pants or do not wear pants). If you
have a pair of pants and a shirt, then you will need to choose between four options (wear pants and a shirt,
wear only pants, wear only a shirt or wear nothing). If you have three items, you will need to choose
between nine options!

Let’s work through the following activity together, and then also look at the solution.

Guided Activity 1.4 Out� t selection algorithm

Different people have different ways to choose what they will wear in the morning. Some people will choose the � rst
thing they see, while other people can spend up to an hour deciding.

Read through the following algorithms, paying careful attention to their quality.

Top selection
1. Open your cupboard.
2. Select the closest shirt.
3. Select the closest pair of pants.
4. Select the closest underwear.
5. Wear the selected items.

Full comparison
1. Open your cupboard.
2. Select the closest shirt.
3. Compare it with each pair of pants.
4. Give each combination a score out of 100.
5. Select the next closest shirt.
6. Repeat step 3 to 5 until you have evaluated all combinations.
7. Choose the combination with the highest score.
8. Compare the selected combination with each pair of underwear.
9. Give each underwear combination a score out of 100.
10. Select the combination with the highest score out of 100.
11. Wear the selected items.

Which of the following two out� t selection algorithms do you think have the highest order and precision?

IT-Practical-LB-Gr10 INK06.indb 5 2019/09/26 09:53

‘Take note’ and ‘Did you know’ boxes

The boxes provide extra, interesting content
that might caution you to ‘take note’ of
something important; or give you additional
information. Note that the content in the
‘Did you know’ boxes will not be part of
your exams.

Consolidation activities

This is a revision activity based on what you have covered in the chapter. Take time to answer the questions on
your own. You teacher may also use these to assess your performance during class.

QR Codes, Videos and Screen captures

These will link you to online content. When you
are in the eBook, you can easily access the links.

254 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

You will be required to demonstrate and discuss your program during a debrie� ng
session.

PROVIDE

PROBLEM

Provide a brief description of
the problem you will be

solving

DISCUSS

DESCRIBE

Discuss the research /
investigation done regarding

the project

DESCRIPTION

RESEARCH

Provide a brief description of
the purpose and scope of

your project

DESIGN

PURPOSE

Provide a document in which
the layout of your software

design is shown

IMPLEMENT

LAYOUT

SOLUTION

Implement a working Delphi
program using the planned

solution

Figure 9.1: Outputs for the effective use of software design tools and techniques

In this chapter, you will learn how to approach the PAT. You will also learn some
additional skills you could use to enhance your project.

Take note

● The PAT is a
compulsory component
of the � nal end-of-year
examination for IT.

● The PAT counts 25% of
your � nal mark for IT. It
is important that you
produce work of a high
standard.

63TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.1 Basic operators

ORDER OF PRECEDENCE
When we evaluate basic mathematical operators in mathematical expressions,
they need to be evaluated using the BODMAS rule – just as you would do in
Mathematics. We refer to this as the order of precedence. The table below lists
the order of precedence used in Delphi:

OPERATOR PRECEDENCE

Brackets () Highest level

* / DIV MOD Second level – from left to right – whichever one comes � rst

+ – Third level – from left to right – whichever one comes � rst

Example 4.1

Evaluate the expression below:

2 + 3 *26 / (16 – 3) – 5

 = 2 + 3 * 26 / 13 – 5 (Level 1 – brackets)

 = 2 + 78 / 13 – 5 (Level 2 – multiplication)

 = 2 + 6 – 5 (Level 2 –division)

 = 8 – 5 (Level 3 – addition)

 = 3 (Level 3 – subtraction)

Activity 4.2

Evaluate the expressions below:

4.2.1 (12 + 4 * 4) DIV 2 4.2.2 12 + 4 * 4 DIV 2

4.2.3 10 – 4 / 2* 6 + 3 4.2.4 8 * 4 – 17 / 2 + 3

4.2.5 4 * (6/2 + 3) 4.2.6 4 * 6 / 2/4 + 3

4.2.7 17 DIV 2 * (4 * 5 +(10 – 1)) * 2.3 4.2.8 23 MOD 3 * (13 DIV 2 –5)

4.2.9 69 MOD (3 + 5) + 1.1 * 4.7 4.2.10 (32 MOD 7) * (26 DIV 8)

USING A TRACE TABLE
A trace table is a tool used to track how the value of variables change in a program
after each line of code is executed. This tool is helpful for testing an algorithm
because it helps you to determine if an algorithm gives the correct result. If the
result is not correct, the trace table can help you to identify the logical error
responsible for the incorrect result.

To create a trace table:
● identify all the variables
● create a table with a column for each line number, a separate column for

each variable, and a column for the output
● follow the code line-by-line and write down the new value of the variable that

changed.

Take note

Operators with the same
importance are executed
from left to right, in the
order in which they appear.

LEARNING ABOUT
ORDER OF OPERATIONS

https://www.youtube.com/
watch?v=dAgfnK528RA

39TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.2 Variable and component names

In Chapter 2, you may have noticed that we spent time giving each component
a descriptive name. This helps makes the code easier to understand.

To ensure that everyone names their variables in the same way, different
programming languages have different naming conventions. Naming
conventions are mainly used so that programmers can understand one another’s
code. Other than the rules below, you can name your variables whatever you
want. Some of the naming conventions are simply a guideline to make the
program easier to understand, while others are rules that will stop your program
from compiling if they are not followed.

In Delphi the naming rules for variable names are:
● all variable and component names must be unique
● names may not contain spaces
● names may not start with a number, but they can contain a number
● names may not contain any special characters (like exclamation marks)

except for underscores (_).

Here are some naming conventions used for variables:
● variable names should describe the data they will contain. For example:

variable name: Amount for a variable that will hold monetary data
● names should use CamelCase. This means the � rst word or letter is in

lowercase, and each word afterwards starts with an uppercase letter, for
example, rAmountPaid

● variable names should start with a single letter pre� x describing the data
type the variable will hold.

 Here are some examples:

DATA TYPE PREFIX EXAMPLES

String s sName

Char c cCode

Integer i iNumber

Real r rAmountPaid

Boolean b bCheckedIn

Naming convention for components:
● component names should describe the task they will perform or the data

they will hold
● names should use CamelCase.
● component names should start with a three letters pre� x that describes the

component type.

Did you know

The Microsoft Windows
operating system is made
up of 50 million lines of
code. Can you imagine
trying to � gure out how the
code works if all the
variables have names like
‘String1’ or ‘x’?

Watch out!

Variable names have no
impact on the values stored
in variables. They simply
make it easier for you to
understand what the
variable should be used for.

Variable and component names3.2

UNIT

57TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.6 Consolidation

Consolidation

var
 dTotal : Double;
 rTotal : Real;
 iMinimum : Integer;
 sName : String;
 cGender : Char;
 bValid : Boolean;

Reserve memory space
to keep variable

iNumber := 12;
bStatus := True;
sName := ‘John’;

● Syntax errors
● Runtime errors
● Logic errors

● Memory (where variable value is kept)
● Memory address
● Associated with variable name

● Content of variable
● One piece of content

(value) at a time
● Speci� c type
● Values (content) can

change (replaced/
overwitten)

● String
● Char
● Integer
● Real
● Boolean
● Compatable types

● Reference to memory location
● Symbolic
● Unique
● Naming conventions

● StrToInt
● StrToFloat
● IntToStr
● IntToFloat
● FloatToStr
● FloatToInt

Consolidation activities Chapter 3: Variables And Components

1. In your own words, give a de� nition for the word ‘variable’ as it relates to computer programming.

2. List � ve Delphi naming rules and conventions for variables.

3. In your own words, what is the difference between an integer and real variable types?

4. What is the difference between syntax, runtime and logic errors.

5. What is the purpose of a variable name?

6. Describe the relationship between the variable name and the memory location.

7. Explain the purpose of converting data types.

8. Study the following code:

Var
 sName, sBirthDate : string;
 iAge : Integer;
 rHeight : real;
 cGender, cGrade : char;
 bSACitizen : Boolean;
Begin
 sName = ‘Lerato’;
 cGender := ‘Female’;
 iAge := 15
 rHeight := 1.66 m;
 sBirthDate := 12-09-2003;
 iAge := rHeight;
 bSACitizen := Yes;
 cGrade := ‘9’;
End;

New words

These are dif� cult words that you may not have encountered before.
A brief explanation for these words are given.

150 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Figure 7.1: Most people follow the same morning routine every day

The advantage of repeating the same tasks is that you only need to decide how
to do the task once.

So far you learned to read in data in a variable. If you need to read ten values and
keep a running total, then you could have done this in the following way:
● initialise the running total
● read a value
● update running total with this value
● read a value
● update running total with this value
● repeat until all values are read and added to the running total.

For this, you will need to write about 21 lines of code! This will make your program
long and cumbersome. Imagine how many lines of code would be required to
add 100 numbers!

In Delphi, you can use looping constructs that allows you to write a set of repetitive
tasks once to achieve the same purpose. This chapter will teach you how to
create programming loops.

New words

loops – loops repeat
certain lines of code until a
speci� c condition is met

IT-Practical-LB-Gr10 INK06.indb 6 2019/09/26 09:53

1TERM 1 I CHAPTER 1 ALGORITHMS

CHAPTER UNITS

Unit 1.1 Basics of algorithms

Unit 1.2 Algorithm quality

Unit 1.3 Creating algorithms

Unit 1.4 Flowcharts

Learning outcomes

At the end of this chapter, you should be able to:
● explain what an algorithm is
● give examples of algorithms in everyday life
● produce an algorithm to solve a problem
● test algorithms to determine the quality and accuracy
● compare algorithms considering, for example, order and precision
● use tools, such as a basic � owchart to represent an algorithm.

 INTRODUCTION
Every day of your life you make use of lists of steps to complete certain tasks.
For example, you might:
● follow a recipe
● download software or music
● use a car repair manual
● set up a music playlist
● follow a knitting pattern

● call a friend using a phone
● read from a music sheet
● follow written instructions to

complete a task.

Each list of steps for the tasks above are an example of an algorithm.
An algorithm is an ordered list of steps used to carry out a task or solve a problem.
It is important to both computers and programmers. As a programmer, your job
will be to tell a computer what to do in different situations. To do this, you can
create an algorithm and write a computer program.

Before you can start creating programs and writing code, you � rst need to learn
how to create an algorithm. In this chapter, you will learn more about algorithms,
including what algorithms are, how to evaluate the quality of an algorithm, how to
create algorithms and how to create � owcharts.

Remember that this information will be used throughout this year when you
create programs.

New words

algorithm – an ordered list
of steps for carrying out a
task or solving a problem.

Take note

Computer programs are
simply lists of instructions
(algorithms). If an algorithm
is not correct, it will cause
an error in the program you
are writing.

ALGORITHMS 1
CHAPTER

TERM 1

IT-Practical-LB-Gr10 INK06.indb 1 2019/09/26 09:53

2 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In this unit you will look at some of the basics of creating algorithms. While there are no speci� c rules about
how to write an algorithm, once it is complete it should meet the following criteria:
● there must be a limited number of steps
● the steps must be:

 easy to understand and follow
 detailed and speci� c
 clear and unambiguous

● each step should:
 consist of a single task
 be at the most basic level that cannot be broken into simpler tasks

● all repetitions must have clear ending conditions
● there must be at least one result (or output).

Look at the following example to help you understand the importance of following a list of instructions.

Example 1.1 Making hot chocolate

Most people have a speci� c way they prefer to drink their hot chocolate. The algorithm below describes one way to
make hot chocolate.

1. Fetch a cup from the cupboard.

2. Place the cup on the counter.

3. Add water to the kettle until there is 500 ml of water in the kettle.

4. Turn on the kettle.

5. Add four teaspoons of hot chocolate to the cup.

6. Add 30 ml of milk to the cup.

7. Add one teaspoon of sugar to the cup.

8. Stir the mixture for 10 seconds.

9. Add boiling water to the cup until the cup is 95% full.

10. Stir the mixture for 10 more seconds.

11. Your hot chocolate is now ready to drink!

By following this algorithm, you should be able to make a cup of hot chocolate. However, this hot chocolate
might not be exactly to your taste. Think and talk to your friend about how your algorithm for making hot
chocolate (or coffee or tea) would be different to the one in the example.

CREATING BASIC ALGORITHMS
Most algorithms can be broken into smaller steps that use algorithms designed for each of the smaller
steps. For example, in the hot chocolate algorithm above, you could create an algorithm that describes
how to open the cupboard, how to select a cup, how to open the hot chocolate container, and so forth.
This algorithm could end up being hundreds of lines long!

To prevent this, you need to focus on completing a speci� c task without going into detail for
each sub-task.

But let’s begin by seeing how well you can follow instructions.

New words

unambiguous – not open
to more than one
interpretation

Basics of algorithms1.1

UNIT

IT-Practical-LB-Gr10 INK06.indb 2 2019/09/26 09:53

3TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.1 Basics of algorithms

Activity 1.1

1.1.1 Follow each step exactly and in the sequence indicated. Do not look at your classmates’ drawings and do not
speak to one another. Use your own interpretation of the instructions.

a. Draw a diagonal line.

b. Draw another diagonal line connected to the top of the � rst one.

c. Draw a straight line from the point where the diagonal lines meet.

d. Draw a horizontal line over the straight line.

e. At the bottom of the straight line, draw a curvy line.

f. Draw a diagonal line for the bottom of the � rst diagonal to the straight line.

g. Draw a diagonal line from the bottom of the second diagonal to the straight line.

1.1.2 Compare your picture with your partner’s.

a. Are your pictures different?

b. Can you explain why?

c. What was dif� cult about following the instructions?

d. What was missing from the instructions?

1.1.3 Write down the criteria that a well-designed algorithm should meet.

Your teacher will tell you what the object was that you should have drawn.
Once you know this, write a set of instructions that someone could follow
to draw the object. Make sure that:
● there is only one way to interpret each step, that is, the instructions

are unambiguous
● you provide enough detail in each step.

Activity 1.2

Write instructions (or an algorithm) that will enable someone to make a paper shape from one sheet of A4 paper.

Once your instructions (algorithm) are complete, swap them with another learner and test if it was easy to follow.
Answer the following questions.

1.2.1 Were the instructions easy to follow? Did it work?

1.2.2 If the instructions did not work, where did your classmate go wrong?

1.2.3 a. What do you need to do to � x it?

b. Adjust the instructions.

Activity 1.3

Write down instructions on how to do the following physical activities. Each activity must have at least � ve steps that
are properly explained.

1.3.1 How you make coffee.

1.3.2 How you do a sit-up.

1.3.3 How to buy a packet of chips at the tuckshop using a R100-note.

1.3.4 How you travel from your house to your school.

In the next unit we will explore different qualities that can help us determine whether the quality of an
algorithm is good.

Did you know

You may have discovered
that good instructions/
algorithms that work on a
� rst try are hard to develop.

IT-Practical-LB-Gr10 INK06.indb 3 2019/09/26 09:53

4 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

To evaluate the quality of an algorithm, you can use two criteria:
● precision
● order

This section will look at how each of these criteria are evaluated.

 PRECISION
Precision refers to how accurately and reliably an algorithm solves a
problem. The more precise an algorithm is, the better it is at solving the
problem correctly regardless of the situation.
Imagine that you created the following algorithm for baking a cake.

Imprecise cake algorithm
1. Put fl our, baking powder, eggs, sugar, butter, and vanilla essence in a bowl.
2. Mix the ingredients.
3. Put the mixture in a pan.
4. Bake the mixture.
5. Remove the baked cake and eat it.

If someone has never baked a cake before, how often do you think this algorithm will result in a
successful cake?

The problem with this algorithm is that it is not speci� c enough. Different people will use different amounts
of each ingredient, use different temperatures, and bake the mixture for a different length of time. Since
only a few of these attempts will result in a tasty cake, the algorithm is not very precise.
A more precise cake algorithm might look like this:

Precise cake algorithm
1. Turn the oven on and set the temperature to 180 °C.
2. Sift 200 grams of self-raising fl our and two tablespoons of baking powder

into a bowl and set aside.
3. Melt 100 grams of butter in the microwave at a low heat for 30 seconds and

set aside.
4. Use eight large eggs and separate the egg whites and yolks.
5. Place the egg whites in a large bowl.
6. Beat the egg whites until they are frothy.
7. Slowly mix 300 grams of sugar into the egg whites.
8. Add the egg yolks to the egg white and sugar mixture, and beat the mixture

for fi ve minutes.
9. Add two teaspoons of vanilla essence to this mixture.
10. Now add the sifted fl our and baking powder mixture, as well as the melted

butter to the bowl.
11. Use a wooden spoon and mix the ingredients for fi ve minutes.
12. Pour the mixture into a greased, round baking pan.
13. Place the baking pan into the oven.
14. After 30 minutes, remove the cake from the oven.
15. Enjoy the cake.

WHAT IS BETA TESTING?

https://www.youtube.com/
watch?v=c5F-mutZ7Yo

Algorithm quality1.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 4 2019/09/26 09:53

5TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.2 Algorithm quality

While this algorithm is more dif� cult to create, it is a lot easier to follow and is much more likely to deliver
a tasty cake. Even if you have never baked a cake before, you should be able to use this algorithm. If you
follow the instructions, the cake should always be a success. This algorithm can thus be called a high

precision algorithm.

 ORDER
Order refers to the total number of steps needed (including repeats) to complete an algorithm. The order
of an algorithm is usually shown as a mathematical formula based on the number of inputs. Order will have
a signi� cant effect on the time it takes to complete an algorithm, especially when working with large
numbers of items.

For example, if you have an algorithm to choose what you will wear each morning and you only have a
single pair of pants, then you will only need to make one decision (wear pants or do not wear pants). If you
have a pair of pants and a shirt, then you will need to choose between four options (wear pants and a shirt,
wear only pants, wear only a shirt or wear nothing). If you have three items, you will need to choose
between nine options!

Let’s work through the following activity together, and then also look at the solution.

Guided Activity 1.4 Out� t selection algorithm

Different people have different ways to choose what they will wear in the morning. Some people will choose the � rst
thing they see, while other people can spend up to an hour deciding.

Read through the following algorithms, paying careful attention to their quality.

Top selection
1. Open your cupboard.
2. Select the closest shirt.
3. Select the closest pair of pants.
4. Select the closest underwear.
5. Wear the selected items.

Full comparison
1. Open your cupboard.
2. Select the closest shirt.
3. Compare it with each pair of pants.
4. Give each combination a score out of 100.
5. Select the next closest shirt.
6. Repeat step 3 to 5 until you have evaluated all combinations.
7. Choose the combination with the highest score.
8. Compare the selected combination with each pair of underwear.
9. Give each underwear combination a score out of 100.
10. Select the combination with the highest score out of 100.
11. Wear the selected items.

Which of the following two out� t selection algorithms do you think have the highest order and precision?

IT-Practical-LB-Gr10 INK06.indb 5 2019/09/26 09:53

6 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

SOLUTION
In terms of the order, the � rst algorithm has a much smaller order than the second algorithm. The � rst
algorithm will always take exactly � ve steps to complete, while the second algorithm could take hundreds
of steps to complete.

In terms of precision, the � rst algorithm will only give the best combination of clothes if the closest items
make up the best combination. The algorithm will fail most of the time and is therefore not precise. The
second algorithm will always give the best combination of clothes and is therefore more precise.

Activity 1.5

1.5.1 Write a de� nition for the terms order and precision and explain the difference between the two terms using
an example.

1.5.2 Different people have different ways to choose where they go shopping. Some people will choose the shop
close to where they live, while other people will drive a long distance to get to a shop where they think they
will get better discounts.

Read through the following algorithms, paying careful attention to their quality.

Shop selection
1. Estimate the distance to the shop.
2. Select the closest shop.
3. Select the groceries you want.
4. Select the teller you want to pay at.
5. Go home with your shopping.

Full comparison
1. Estimate the distance to the shop.
2. Select the shop that will offer the greatest value for money.
3. Compare it with the second choice of shop.
4. Give each shop a score out of 100.
5. Select the next closest shop.
6. Repeat step 3 to 5 until you have evaluated all combinations.
7. Choose the combination with the highest score.
8. Compare the selected combination with each distance to shop.
9. Give each shop and distance combination a score out of 100.
10. Select the combination with the highest score out of 100.
11. Visit the shop of your choice.

Which of the two shop selection algorithms do you think have the highest order and precision?
Explain your choice.

IT-Practical-LB-Gr10 INK06.indb 6 2019/09/26 09:53

7TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.2 Creating algorithms

There are many possible algorithms that can be used to complete the same task and achieve the same
goal. However, not all algorithms are equally good. If someone has ever made you bad coffee or your
search engine has ever given you the wrong results, then you have seen what happens when an
algorithm fails!

So how can you make sure your algorithm does what it is supposed to do? Let’s look at some of the steps
you can follow to make sure that you are able to create high quality algorithms:
● Understanding the problem: The � rst step in creating an algorithm is to understand what problem

the algorithm should solve. If you don’t know this, you can easily create an awesome algorithm, but
it will solve the wrong problem.

● De� ning the desired solution or output: De� ning what your solution or output is, will depend on
the problem you are trying to solve. In other words, de� ning your desired output is closely linked to
understanding what the problem is. You may need an exact answer, or you may simply need a close
enough estimate. De� ning the desired output could therefore have a signi� cant effect on the time it
takes to solve the problem.

● De� ning the inputs: The third step is to de� ne what information you will need for the algorithm to
work. This information can be entered by a user or obtained from a different source, such as an
existing � le.

● Designing a set of steps to complete the task: The fourth step is to design a set of steps that will
use your inputs to complete the task. These steps need to be speci� c and detailed enough that they
will always give you the correct answer.

● Testing the algorithm: Every algorithm should be tested, and not just using the situations or data
you are most likely to come across. One technique for testing an algorithm is to create a trace table.
You will learn about this in Chapter 4.

● Updating the algorithm: If your tests reveal any problems with the algorithm, you should change
the steps to � x the problem. Once changed, the new algorithm should be tested to ensure it works
as expected.

To see how these steps can be used to create an algorithm, work through the example below.

Example 1.2 Getting dressed

You have been asked to write an algorithm that will help your little sister to get dressed in the morning. Using the
steps listed above, create a ‘Getting dressed algorithm’.

 Understand the problem

The � rst step is to understand the problem. In the case of your little sister getting dressed, this means
understanding what your little sister can do. For example, if your little sister does not know how to put on clothes,
then you will need to create algorithms for how to put on each piece of clothing. If it she does not know how to
identify different types of clothes, then you will need to create visual identi� cation algorithms for her.

After speaking to your mother, you � nd out that your little sister already knows how to identify and put on clothes, so
you only need an algorithm for the general process of getting dressed. With this information in mind, you can
continue to the next step.

De� ne the desired output

Now that you know what the problem is, you need to determine what the desired result is. How many pieces of
clothing should your little sister be wearing? Do the clothes need to match or be fashionable? Depending on what
the desired output is, your algorithm will change.

Creating algorithms1.3

 UNIT

IT-Practical-LB-Gr10 INK06.indb 7 2019/09/26 09:53

8 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 1.2 Getting dressed continued

Based on your conversation with your mother, the output is as follows:
● Your little sister needs to be dressed in underwear, skirt or shorts and a t-shirt.
● Your little sister should not wear any duplicated pieces of clothing.
● The clothes do not need to match or be stylish.

De� ne the inputs

The � nal piece of information you need is what the inputs into the algorithm are. This is any information available to
you that needs to be used in the algorithm. According to your mother, the inputs are as follows:
● Your little sister will be wearing pyjamas at the start of the algorithm.
● There will always be exactly � ve t-shirts, three pairs of shorts or three skirts, and � ve pieces of underwear available.

Design a set of steps to complete task

Finally, you can write your algorithm:
1. Walk to the cupboard. 2. Open the cupboard.
3. Open the washing basket. 4. Remove your pyjamas.
5. Place your removed pyjamas in the washing basket. 6. Take one pair of underwear from the cupboard.
7. Put on the underwear. 8. Take a shorts or skirt from the cupboard.
9. Put on the shorts or skirt. 10. Take a t-shirt from the cupboard.
11. Put on the t-shirt. 12. Close the cupboard to complete the algorithm.

Test the algorithm

Once you have created an algorithm, you need to test it. By following the steps exactly as they are written, you can
see if the algorithm returns the desired result. With your dressing algorithm, perhaps you will realise that there is
more than one cupboard in the house and that your little sister often tries to � nd underwear in your cupboard!

Update the algorithm

The � nal step is to update the algorithm. This gives you a chance to � x any problems identi� ed while testing the
algorithm. For example, you can update your algorithm to specify exactly which cupboard your little sister should be
used when getting dressed. Once the change has been made, you need to test the algorithm again to make sure the
changes did not introduce new problems.

While designing an algorithm might sound time consuming at � rst, it will save you a lot of time eventually.
Professional programmers spend half their time � xing problems and these problems are often caused by problems
with their algorithms. By making sure your algorithm is correct from the start, you will stop yourself from having to
� rst identify the mistake and then � x it later.

Watch out!

A computer program or algorithm is not like another person. It will never � ll in ‘obvious’ missing information or make
assumptions. Instead, it will always do exactly what you tell it to do, even if it is obviously wrong or pointless.

Activity 1.6

Someone that has never seen your school needs to � nd your IT classroom when entering the school: Apply the steps
when creating the algorithm to guide the person from the gate to the IT classroom.

1.6.1 Write down what the goal of the algorithm is.

1.6.2 Write down how you will determine if the algorithm is successful.

1.6.3 Write down any information the user will need to complete your algorithm.

1.6.4 Write down the algorithm to walk from the gate to the IT classroom.

1.6.5 Swap algorithms with one of your classmates, then test each other’s algorithms.
Make sure you follow the steps exactly as they are written.

1.6.6 Update your algorithm if it did not successfully guide your classmate to the IT classroom.

IT-Practical-LB-Gr10 INK06.indb 8 2019/09/26 09:53

9TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.4 Flowcharts

 UNIT

A � owchart is a visual representation of an algorithm. It can be made up of � ve different elements.

ELEMENT FUNCTION SHAPE

Terminal Indicates the start and end of an algorithm.
Begin / End

Input/Output Shows when data is added to the algorithm or given to the user.
Input / Output

Instruction Gives an instruction that the algorithm must follow.
Instruction

Decision Shows a decision (or condition) that affects the algorithm’s
behaviour. Decision

Connector Connects one element of the algorithm to the next element. Shows
the direction in which you move from one element to the next.

By combining these items, you can visually show any algorithm. As you progress you will use different
� owchart symbols.

Example 1.3 Swapping contents of two containers � owchart

Here is a � owchart of an algorithm that you can use to swap the contents of container A that contains milk with
contents of container B that contains water. Study it carefully.

Begin

End

Get a third empty
container C

Pour contents of container
A into container C

Pour contents of container
B into container A

Pour contents of container
C into container B

Flowcharts1.4

IT-Practical-LB-Gr10 INK06.indb 9 2019/09/26 09:53

10 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 1.4 Determining whether a person is male or female using their ID numbers

Here is a � owchart of an algorithm that you can use to determine whether a person is a male or a female using the
seventh digit of their ID number. If the seventh digit is greater than four, then the person is male, otherwise the
person is female.

Begin

End

Get digit

Digit > 4 T

F

Display “Female”

Display “Male”

Example 1.5 Determining the area of a rectangle

Here is a � owchart of an algorithm that you can use to determine the area of a rectangle.

Begin

Determine area

Area = length × breadth

End

Get length

Get breadth

Display area

IT-Practical-LB-Gr10 INK06.indb 10 2019/09/26 09:53

11TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.4 Flowcharts

Activity 1.7

1.7.1 Draw a � ow chart for the following algorithms:

a. Making hot chocolate (refer to algorithm on page 3).

b. Crossing the street.

c. Finding the area of a circle.

d. Entering a contact into your cell phone.

1.7.2 Evaluate the following � owchart.

a. Check that all the steps listed are needed.

b. If there is anything wrong or missing, identify the missing step and improve the � owchart.
 This � owchart is based on the following scenario: A employee receives a weekly wage for 40 hours
worked. The wage is calculated by multiplying the number of hours with the hourly wage. Hours above
40 are overtime and the wage increase to one and a half of the normal hourly wage.

Calculate the basic wage for 40 hours
Determine the extra hours worked

Calculate the wage for the overtime
Calculate the total wage

Calculate the basic wage for
the hours worked

Begin

End

Get name
Get Hourly Wage

Get Hours Worked

Display the name
Display the � nal wage

Is hourse worked
more than 40?

IT-Practical-LB-Gr10 INK06.indb 11 2019/09/26 09:53

12 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

n

● What is it?
● What is it used for?

● Order
● Precision

● Understand the problem
● Desired output
● De� ne input
● Steps to complete
● Test
● Update

● Linguistically
● Flowchart and symbols

ALGORITHMS

Basics

Quality

Creating

Representation

Consolidation activity Chapter 1: Algorithms

1. Answer the following questions in your own words.

a. What is an algorithm?

b. What criteria should an algorithm meet?

c. Brie� y describe the steps that you should take to create a high-quality algorithm.

d. What criteria do you need to evaluate the quality of an algorithm?

e. Name each element in a � owchart and draw their relative shapes.

2. Sequence the following steps for washing hands so that they are in a logical order:

Turn off the tap

Dry your hands

Rub your hands together

Rinse the soap away with

Rinse your hands with water

Putsoap on your hands

Turn on the tap

[Source: SA Computer Olympiad Talent Search competition, sourced from the Berbras competition]

3. The following steps, if completed correctly, will represent an algorithm to multiply a two-digit number by a
one-digit number in the form: AB × C where A, B and C represent digits, for example:

A B C

1 6 × 7

Consolidation

IT-Practical-LB-Gr10 INK06.indb 12 2019/09/26 09:53

13TERM 1 I CHAPTER 1 ALGORITHMS I UNIT 1.4 Consolidation

Consolidation activity Chapter 1: Algorithms continued

 Fill in the missing instructions to complete the algorithm
for multiplying 16 by any one-digit number (C).

Hint: C cannot be 0.

End

Begin

Calculate 6 × C

False

True

Display sum

4. What is the purpose of the following algorithm?

End

Begin

False

False

True

True

A < B

A < C

Display A

Swap A and C

Swap A and B

5. Create an algorithm to move from point A to point B.

Each block represents 10 steps

A

B

6. The crane in the port of Lodgedam responds to six different input commands:

a. Left

b. Right

c. Up

d. Down

e. Grab

f. Release

Crate A is in the position on the left, crate B is in the position on the right. Which algorithm is the correct one to
swap the position of the two crates? Write down the letter of the correct answer.
A. (Down, Grab, Up, Right, Down, Release, Up)
B. (Down, Grab, Up, Right, Down, Release, Up) (Right, Down, Grab, Up, Left, Left. Down,

Release, Up) (Right, Down, Grab, Up, Right, Down, Release)
C. (Right, Right, Down, Grab, Up) (Left, Left, Down, Release, Up)
D. (Down, Grab, Up, Right, Right, Down, Release, Up) (Down, Grab, Left, Down, Release, Up)

(Down, Grab, Up, Right, Down, Release, Up)
[Source: SA Computer Olympiad Talent Search competition, sourced from the Berbras competition]

IT-Practical-LB-Gr10 INK06.indb 13 2019/09/26 09:53

14 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activity Chapter 1: Algorithms continued

7. You have to draw a house as shown below:

6

5

4

3

2

1

–1

–2

–3

–4

–5

–6
y

y

x x

The following ‘rules’ must be followed when drawing the house:

● You may not lift your hand/your pen.
● You may not draw on a line that has already been drawn.
Someone created two algorithms for drawing the house according to the above rules. Follow each algorithm to
see if it complies to the rules above. If you � nd that an algorithm does not comply with the rules, rewrite it so
that it is in line with the rules.

The coordinates are in the format (x, y), e.g. (1, 2) refers to x = 1 and y = 2 on the grid.

Algorithm 1
1. Start at (5, –1)

2. From the above position, draw a diagonal line to
(–5, –6)

3. From the position in step 2, draw a straight line to
(5, –6)

4. From the position in step 3, draw a diagonal line to
(–5, –1)

5. From the position in step 4, draw a diagonal line to
(0, 3)

6. From the position in step 5, draw a diagonal line to
(5, –1)

7. From the position in step 6, draw a straight line to
(5, –6)

8. From the position in step 2, draw a straight line to
(–5, –1)

9. From the position in step 8, draw a straight line to
(5, –1)

Algorithm 2
1. Start at (5, –6)

2. From the above position, draw a diagonal line to
(–5, –1)

3. From the position in step 2, draw a straight line to
(5, –1)

4. From the position in step 3, draw a diagonal line
to (–5, –6)

5. From the position in step 4, draw a straight line to
(5, –6)

6. From the position in step 5, draw a straight line to
(5, –1)

7. From the position in step 6, draw a diagonal line
to (0, 3)

8. From the position in step 7, draw a diagonal line
to (–5, –1)

9. From the position in step 8, draw a straight line to
(–5, –6)

IT-Practical-LB-Gr10 INK06.indb 14 2019/09/26 09:53

15TERM 1 I CHAPTER 2 DELPHI

CHAPTER UNITS

Unit 2.1: Opening Delphi and exploring the integrated development environment (IDE)

Unit 2.2: Components and properties

Unit 2.3: Creating a simple Delphi project

Unit 2.4: Events

Unit 2.5: Syntax

Learning outcomes

At the end of this chapter, you should be able to:
● clearly explain the Delphi programming environment and principles
● explain how the Delphi IDE can be used to create programs
● identify, discuss and use various Delphi components
● identify, discuss and apply different component properties
● create various Delphi events
● use the correct Delphi syntax.

INTRODUCTION

Delphi is one of many high-level programming languages. This means that it was
designed to be easier to write and be read by people. This quality makes it an
ideal language to use when learning about programming.
In this chapter, you will learn:
● how the Delphi IDE can be used to create programs
● how to create, open and save Delphi projects
● about the basic components you can use to create a simple graphical user

interface (GUI)
● how to work with component properties
● how to create a Delphi event to change component properties and

behaviour
● how to create basic Delphi code.

Did you know

As you learn programming,
you should focus on
understanding the
programming concepts and
logic. Once you understand
that, learning any
programming language is
easy!

DELPHI 2
CHAPTER

TERM 1

IT-Practical-LB-Gr10 INK06.indb 15 2019/09/26 09:53

16 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In this unit you will explore the Delphi IDE and begin creating simple programs.

Carefully follow the step-by-step instructions below:

INSTRUCTIONS FOR OPENING DELPHI AND EXPLORING THE IDE
1. Open Delphi.

You should see the following:

2. To create a new Delphi Application, click on:
File → New → VLC Forms Application – Delphi

3. The following screen will open. This is the IDE where you create applications.

Take note

You will � nd the instructions
for how to install the Delphi
Integrated Development
Environment (IDE) in
Appendix A. Follow the
instructions carefully and
ensure that your program is
able to open correctly.

Opening Delphi and exploring the Delphi IDE2.1

UNIT

IT-Practical-LB-Gr10 INK06.indb 16 2019/09/26 09:53

17TERM 1 I CHAPTER 2 DELPHI I UNIT 2.1 Opening Delphi and exploring the Delphi IDE

4. The Delphi IDE includes the following:

Menu bar The File menu allows you to create
new applications, open and reopen
projects, save projects, and print.

The Edit menu allows you to cut,
copy, and paste.

The View menu allows you to view
various components and tools.

The Run menu allows you to
execute (or run) a Delphi program
and to debug a Delphi program.

Toolbar The Toolbar enables you to quickly
access features and tools to help
you create your application.

Structure
panel

The Structure panel is a quick
reference to various elements in
your project. In the structure panel
you will � nd Classes, Variables/
Constants and Uses folders. The
structure panel allows you to
expand and collapse subfolders.

Object
Inspector

The Object Inspector enables you
to set the initial properties and the
way a component behaves and
appears in your application. The
Object Inspector can be arranged
by Category or by Name. If you
want to change the arrangement
of the Object Inspector, click any
place inside the Object Inspector,
then right-click the mouse, and a
pop-up menu will appear. Click on
Arrange and select the option you
want to use.

The Form
Designer

The Form Designer is used to
design the user interface for the
program you are writing. All other
components are placed on this
form. These components are found
on the Tool Palette and you will
place it on the form during design
mode. If you run a program, the
form becomes executable. This is
referred as the run mode.

IT-Practical-LB-Gr10 INK06.indb 17 2019/09/26 09:53

18 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

The Tool
Palette

Delphi components are grouped
together on different roll-up menus on
the Tool Palette. The two pages that
you will use are the Standard page and
Additional page.

The Project
Manager

The Project Manager enables you to
compile and build projects.

SAVING A DELPHI PROJECT
It is important that you save your Delphi project correctly. Each program you
create in Delphi will have two � les: a unit � le and a project � le. The unit � le refers
to the speci� c user interface and code you are creating in Delphi. The project � le
is a container for all the units used in your program. To make sure you do not lose
information, always save both the unit � le and the project � le. Each Delphi project
also needs to be saved in its own folder. Your teacher will guide you to create your
folder on a network drive or local computer.

Example 2.1 Saving a project

To save your new project:

1. Create a folder for your Delphi project.

2. Open the File menu and select the Save Project As option.

3. Navigate to the folder that you created.

4. The � rst � le that you will be saving is your unit � le.

5. In the File name textbox, enter the name “HelloWorld_u” and click Save.

IT-Practical-LB-Gr10 INK06.indb 18 2019/09/26 09:53

19TERM 1 I CHAPTER 2 DELPHI I UNIT 2.1 Opening Delphi and exploring the Delphi IDE

Example 2.1 Saving a project continued

6. The Save Project As window will open again. Enter the name “HelloWorld_p” and
click Save. This is the project � le for the ‘Hello World’ application.

7. Your application has now been saved. Every time you now make a change to the
project, you can use the CTRL + S shortcut key to save the project.

Now it’s time for you to practise saving a new project. If you feel unsure of what
to do, refer to the example above to help you.

Activity 2.1

2.1.1 Create a new folder, called Activity2_1.

2.1.2 Create a new project.

2.1.3 Save the unit � le in the folder you created as Activity2_1_u.

2.1.4 Save the project � le in the folder you created as Activity2_1_p.

Take note

● The unit and project
names may not contain
spaces.

● Add _u to the unit
name.

● Add _p to the project
name.

IT-Practical-LB-Gr10 INK06.indb 19 2019/09/26 09:53

20 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

COMPONENTS
In Delphi you can add images, buttons, labels and menus to a user interface in a few minutes. To create
user interfaces quickly and effectively, you need to know which components are available to you. There
are many different components that can be used in different scenarios. However, the table below lists a
few of the most important components you will use this year.

NAME DESCRIPTION PICTURE

TForm A form is the component that all other components are
placed on. It provides the foundation for your user
interface.

TLabel A simple label can be used to display text in the user
interface (UI).

TButton A button that can be pressed by users to trigger an event.

TEdit A text box that can be used to obtain text input from
users. It can also be used to display output, but this would
be by exception.

TImage A frame that can be used to display images.

PROPERTIES
Properties determine the way the components in your program look. You can change the look of your
program by changing the properties of components. Because Delphi is an object-oriented language, it
can write data to components and read data from components. For example, if you had a label component
in your program, it would have multiple properties that you could read or write to. The properties for the
label component include the caption, name, font colour, background colour and font size. You could also
change the height and width property of the label component to resize it.

The table below shows a few of the most useful properties that you can use for Delphi components:

NAME DESCRIPTION

Name Sets the name of the component.

Caption Sets the text shown by several different components (including labels, buttons, textboxes and forms).

Text Sets or reads the text entered into a textbox (or TEdit) component.

Picture Sets or reads the picture shown by image components.

Height Takes a number value that sets the height of the object.

Width Takes a number value that sets the width of the object.

Font.Size Takes a number value that sets the size of the font.

Font.Color Sets the colour of the text.

Components and properties2.2

UNIT.

IT-Practical-LB-Gr10 INK06.indb 20 2019/09/26 09:53

21TERM 1 I CHAPTER 2 DELPHI I UNIT. 2.2 Components and properties

Activity 2.2

2.2.1 Open the Delphi project Basic_Properties_p.dproj by:

● navigating to the folder where your project is saved.
● double clicking on the project � le (.dproj)

2.2.2 After opening Basic_Properties_p.dproj, you will see the following screen:

2.2.3 Do the following using the Object Inspector:

a. change the form’s caption to your name and surname.

b. change Button1’s name to btnRed and the caption to Red.

c. change Button2’s name to btnGreen and the caption to Green.

d. change Button3’s name to btnBlue and the caption to Blue.

e. change Button4’s name to btnPurple and the caption to Purple.

2.2.4 a. Change the height of btnGreen to 65 and the width to 121.

b. Change width and height of btnBlue to have the same width and height as
btnPurple.

2.2.5 Go to the form’s font property and change the font to size 12.

2.2.6 Apart from the properties listed above, choose two other properties of BtnGreen
that you can change.
Copy the table below and complete it. Describe the result of the changes you made.

COMPONENT PROPERTY DESCRIBE RESULT OF CHANGE

BtnGreen

BtnGreen

Take note

The last two properties
from the table (Font.Size
and Font.Color) both have a
full stop in them. To
understand why this is, you
need to understand what a
font does. The font of a
component determines the
way the text looks, which
includes the size of the text,
the style of the text and the
colour of the text. Since the
look of the text is
determined by all these
elements, they are all
properties of the font.
However, the font itself is a
property of a button or
label. So size and colour
are properties of a property.
To show that something is
a property of a property,
you use the dot notation
shown above.

IT-Practical-LB-Gr10 INK06.indb 21 2019/09/26 09:53

22 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

So far you have learnt about the different components in Delphi and their
properties and how to change it. When you create a program using the Delphi
IDE, you will work with two different views of the application. These are:
● design view
● code view.

You can change from design view to code view or vice versa by clicking on the
code or design tabs at the bottom of the IDE.

In this unit, you will learn more about how these views work.

DESIGN
The Designer screen is that part that you use to create a user interface for your
application. It contains the form component that you use to design a user
interface. The form serves as a container for the components (such as labels and
buttons) that are used to design a user interface.

Figure 2.1: The Design screen is used to create the GUI

PLACING COMPONENTS ON THE FORM
Work through the following example to help you understand how to place different
components on your form.

New words

user interface – the part
users see and interact with
when using a program

Creating a simple Delphi project2.3

UNIT

IT-Practical-LB-Gr10 INK06.indb 22 2019/09/26 09:54

23TERM 1 I CHAPTER 2 DELPHI I UNIT 2.3 Creating a simple Delphi project

Example 2.2 Creating a project

1. Create a new project named, HelloDelphi_p.proj. Save the unit as HelloDelphi_u.
Rename the form to frmHelloDelphi.

2. Select the Tool Palette on the right-hand side of the screen. Open the Standard
option in the Tool Palette.

3. Scroll down the list of components until you � nd the TLabel component.

4. Drag the TLabel component from the Tool Palette onto the Form.

5. You should now see the text, Label1, in the Design screen.

6. Press the CTRL + S shortcut key on your keyboard to save your project.

7. Drag the TButton component from the Tool Palette onto the form below the label.

8. Change the properties of the label and button as follows:

COMPONENT PROPERTY NEW VALUE

Label Name lblMessage

Caption ???????

Button Name btnChange

Caption Change

 Your form should now look like this:

IT-Practical-LB-Gr10 INK06.indb 23 2019/09/26 09:54

24 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

CODE
In the previous section, you saw how the Design screen could be used to create
a user interface for your application. When we change a property using the object
inspector, we say it is changed during design time. Sometimes we need to
change properties when the program is executed (that is, during runtime).

The design screen/object inspector cannot be used to change properties during
runtime. We need to use a code editor to create the code for it.

To see how a simple user interface is created, work through the following example.

Example 2.3

1. Double click the [Change] button. The codeview will open and you will see the
following:

procedure TfrmHelloDelphi.btnChangeClick(Sender:
TObject);
begin

end;

2. Add the following line of code between the begin and end lines:

 lblMessage.Caption := 'Hello, Delphi!';

3. Save the project.

The assignment statement assigns the text/value on the right of the := to the left (the
Caption of the Label)

RUNNING THE PROJECT
1. To run the project, click

the [Run] button from
the menu bar.

2. Click the [Change] button.
The following screen displays:

3. The project is now in runtime

and the code was executed to
change the caption of the label.

4. To close runtime mode and go
back to design view or code
view, click on the Close icon .

Take note

For Delphi to understand
your code, it needs to be
written using the Delphi
programming language and
following the Delphi
language rules.

Take note

Make sure to enter the
code exactly as it is shown
in the example. This
includes the colon before
the equals sign and the
semicolon at the end of the
line.

Take note

A statement ends with a
semicolon (;). The semicolon
tells Delphi that it is the end
of a statement – in this
instance the assignment
statement that will assign
text to the label caption.

Take note

lblMessage.Caption := 'Hello, Delphi!';

Label propertyLabel name Text to change caption

Assignment operator in Delphi

IT-Practical-LB-Gr10 INK06.indb 24 2019/09/26 09:54

25TERM 1 I CHAPTER 2 DELPHI I UNIT 2.3 Creating a simple Delphi project

Activity 2.3 Individual Activity

2.3.1 Add code to the [Change] button for the HelloDelphi program as follows:

procedure TFrmHelloDelphi.btnChangeClick(Sender:
TObject);
begin
 lblMessage.Caption := 'Hello, Delphi!';
 frmHelloDelphi.Caption := 'Hello';
 lblMessage.Caption := 'Hello, World';
 lblMessage.Font.Size := 48;
 lblMessage.Font.Style := [fsItalic];
end;

2.3.2 For each of the new instructions you added, describe what happened. Hint:
Change more than one font style by separating them with commas. For example,
[fsBold, fsUnderline].

2.3.3 Open the project CodeProperties_p provided in the 02 – Code Properties folder.
The following components appear on the form in design view:

Use code so that each button will change the labels above them as shown below.
Button 4 changes the form’s caption shown below. Hint: Use the Font.Color
property to change the colour of the font.

2.3.4 After the program is run and all the buttons have been clicked, the screen above
must be displayed.

Take note

The font style is placed
between square brackets
and starts with ‘fs’. For
example [fsItalic].//add this

//code

IT-Practical-LB-Gr10 INK06.indb 25 2019/09/26 09:54

26 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

UNIT

2.4 Events

Delphi is an event-driven programming language. This means that all the code inside your program must
be activated by an event (for example, when you clicked the [Change] button in the previous unit, you
triggered an OnClick_() event). In this unit you will learn more about events.

CREATING AN EVENT
An event triggers when the state of an object or component changes. This means an event occurs when
a user interacts with a component. With an OnClick_() event, the state of the object changes from ‘not
clicked’ to ‘clicked’ when you click on the BUTTON. Any code executed as a result of an event is handled
by an event handler.

For example:
Indicate an OnClick event on btnChange

Event handler for
btnChange. When the

button is clicked, the code
within the event handler

is executed

The following example shows how an event can be added to a program.

Example 2.4 Disappearing cats user interface

Let’s create an application that shows a cute cat picture with two buttons. When the � rst button is clicked, the cat
picture will disappear. When the second button is clicked, the cat will appear again.

1. Create a new folder.

2. Create a new project.

3. Save the unit � le in the folder you created as DisappearingCats_u.

4. Save the project in the folder you created as DisappearingCats_p.

5. Change the form’s name to “frmDisappearingCats”.

6. Change the form’s caption to “Disappearing Cats”.

7. Change the form’s height to 508 and the form’s width to 668.

8. Add a TImage component to your form from the Additional list in the Tools Palette:

In the object Inspector, look for the Picture property, then click on
the . This will open the picture editor. Click the [Load] button to
load a picture from your computer (navigate to the folder where the
picture � le is stored.)

IT-Practical-LB-Gr10 INK06.indb 26 2019/09/26 09:54

27TERM 1 I CHAPTER 2 DELPHI I UNIT 2.4 Events

Example 2.4 Disappearing cats user interface continued

9. Place the image in the top-left corner of the form.

10. By dragging the small blue circles, increase the size of the image until it � lls most of the form. Leave enough
space underneath the form to add two buttons.

11. Change the Name property of the image to “imgCat”.

12. Add two TButton components (from the Standard list) on the form.

13. Place the buttons at the bottom-left and bottom-right of the form.

14. Change the names and captions of the buttons as follows:

Name Caption

btnShow Show

btnHide Hide

Take note

You can add a component to the Form by double-clicking on the component in
the Tool Palette.

IT-Practical-LB-Gr10 INK06.indb 27 2019/09/26 09:54

28 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 2.4 Disappearing cats user interface continued

15. Finally, select the image component and click on the three dots button next to the Picture property in the Object
Inspector

16. Click on the Load. You will need to select the picture from its � le location and click on Open.

17. Click OK.

18. Set the Stretch property of your picture to True.

19. Save and run your application.

Well done! You have now created the user interface for your application.

METHODS
Components have properties and methods. You have already learnt how to change the properties of a
component. Methods are actions used to change the behaviour of a component.

For example: To hide or show this cat image imgCat we use the Hide and Show methods of imgCat:
● imgCat.hide
● imgCat.show

IT-Practical-LB-Gr10 INK06.indb 28 2019/09/26 09:54

29TERM 1 I CHAPTER 2 DELPHI I UNIT 2.4 Events

Example 2.5 Coding the hide and show methods for the cat image

Now that you have created the user interface for your ‘Disappearing Cats’ application,
you can create events for the two events.

1. Open the DisappearingCat project.

2. Create an onClick event for the [Show] button. When this button is clicked, the
image must appear.

3. Create an onClick event for the [Hide] button. When this button is clicked the image
will disappear.

4. Insert the code as shown in the event handlers below

5. Save and run your application. You should now be able to hide and show the cat, by
clicking on the different buttons.

Congratulations, you have just created an application that uses two OnClick events to
show or hide an image!

Take note

You can also press the
CTRL + SHIFT + F9
shortcut key to run your
application.

IT-Practical-LB-Gr10 INK06.indb 29 2019/09/26 09:54

30 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Because Delphi is an event-driven language, all projects will use events, combined
with lines of code, to add interactivity to the applications.

Activity 2.4

2.4.1 Read the following statement, and in your own words (using an example), explain
what you understand by it.

An event triggers when the state of an object or component changes. With an
OnClick_ () event, the state of the object changes from ‘not clicked’ to ‘clicked’
when you click on the BUTTON.

2.4.2 What is an event handler?

2.4.3 Complete the sentence by � lling in the missing words:
A ________ ends with a semicolon (;). The ________ tells Delphi that it is the
end of a statement.

2.4.4 Create a new project named ImageShowHide_p. Do the following:

a. Add two buttons.

b. Add two Image components: one
on top of another.

c. Load the Book Image for the � rst
Image component, and the
NoCamera Image for the second
Image component. The images
have been provided. Remember
to set the Stretch property so
that the pictures � t into the
Image component.

d. Create onClick_ () events for the two buttons:

i. when button 1 is clicked, the
Book image is displayed and
the NoCamera image is
hidden.

ii. when button 2 is clicked, the
NoCamera image is displayed
and the Book image is hidden

e. Save and run the project.

IT-Practical-LB-Gr10 INK06.indb 30 2019/09/26 09:54

31TERM 1 I CHAPTER 2 DELPHI I UNIT 2.5 Syntax

Syntax refers to the speci� c rules of a language. For example, in English, one must follow grammatical
rules when constructing a sentence. If these rules are not followed, the sentence will not make sense nor
will it be understood.

The same is true in programming languages. Every programming language has its own sets of rules for
creating instructions for the computer. If you break even the smallest rule, you will get a syntax error and
the program will not run!

Delphi uses a compiler. A compiler checks the entire program for syntax errors before it executes.
The program will only execute when the entire program is free of syntax errors. If there are syntax errors,
the program will not execute, and the Compile dialog box will display the number of syntax errors. This is
shown in the image below:

The following lists a few of the most important Delphi syntax rules.

RULE EXAMPLE

Every statement should end with a semicolon. lblHelloWorld.Caption := 'Hello, Delphi!';

Comments (which are ignored by Delphi) can
be added to the code by starting the comment
with two forward slashes (//).

Comments are used to explain code.

btnChange.Width := 25;
// This will change the width of the button.

The ‘begin’ and ‘end;’ keywords are used to
group multiple lines of code together.

Generally, for every begin, there must be an
end.

begin
 btnChange.Width := 25;
 btnChange.Height := 50;
end;

The � nal ‘end.’ statement in a program must
end with a full stop.

unit u_basicCalculator;

begin
 btnChange.Height := 50;
end;

end.

An object’s properties or methods are
referenced using dot notation after the
object’s name.

lblHelloWorld.Caption := 'Hello, Delphi!';

Delphi’s variables or objects are not case-
sensitive, so “lblText” is the same as
“LBLTEXT” or “lbltext”.

LBLHelloWorld.Caption := 'Hello, Delphi!';

Did you know

In the examples from the table, the two
forward slashes (//) show that the text after the
slashes are a comment. These comments can
help you to understand the program but are
ignored by Delphi.

Syntax2.5

UNIT

IT-Practical-LB-Gr10 INK06.indb 31 2019/09/26 09:54

32 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Some of these rules and the concepts behind them will be covered in greater
detail in later chapters.

Activity 2.5

2.5.1 Looking at the code from your previous three applications, write down examples
of the following syntax:

a. A statement ending in a semicolon from the DisappearingCats application.

b. A statement using the assignment operator from the HelloDelphi application.

c. Begin and end commands from the HelloDelphi application.

d. Statement referencing an object’s properties or methods using the dot
notation from the DisappearingCats application.

2.6.2 Open the project called SyntaxErrors_p from the 02 – Syntax Errors folder. The
program contains several syntax errors. Correct the syntax errors and run the
program.

IT-Practical-LB-Gr10 INK06.indb 32 2019/09/26 09:54

33TERM 1 I CHAPTER 2 DELPHI I UNIT 2.5 Consolidation

Consolidation

Delphi IDE

Events

Syntax

Creating a
project

Components
and

Properties

Components
and Methods

Toolbar Structure panel

Project Manager

Compile/Run

Open

Save

Create

Runtime view

Runtime view Runtime view

Code view
Placing components

Button – Double Click

Language rules

OnClick Event (Event Handler)

Change Methods (behaviour)

Change Methods
in Code view

Change Methods
in Object Inspector

Change Methods in Code view

Placing components

Design view

Create Events

Show/Hide

Menu bar

Tool Palette
Form Designer

Object Inspector

Consolidation activities Chapter 2: Delphi

1. Explain the difference between an event and an event handler.

2. Explain the difference between design and runtime mode.

3. What does syntax refer to?

4. Explain the difference between a property and a method of a button and provide an example of each one.

5. Create a project called DisappearingButtons_p. Add the form DisappearingButtons_u with the following
components:

COMPONENT PROPERTY VALUE

Form1 Name

Caption

Height

Width

frmSize

Size

190

190

Button1 Name

Caption

Visible

btnBig

Big

True

Button2 Name

Caption

Visible

btnSmall

Small

False

Note: If the visible property is set to False, the button will become invisible when the program is executed.

IT-Practical-LB-Gr10 INK06.indb 33 2019/09/26 09:54

34 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 2: Delphi continued

Using code, do the following:
a. Double click on the [Big] button and write code to do the following:

● Change the Height of the form to 450
● Change the Width of the form to 250
● Change the visible property of the [Big] button to False.
● Change the visible property of the [Small] button to True.

b. Double click on the [Small] button and write code to do the following:
● Change the Height of the form to 250
● Change the Width of the form to 150
● Show the [Small] button.
● Hide the [Big] button

6. Create a Form to simulate a traf� c light.
Use the following components:

Form

● Three circle shapes (TShape component)
Hint: Change the square to a circle in the object inspector using the Shape property.

● Three buttons (Stop, Caution, Go).

You could also add a picture
component with a picture to
the form and add the shapes
on top of the picture:

a. When you click on the [Stop] button, the circle shape at the top must change to red and the colour of the
other two shapes (Caution and Go!) must turn to olive and green respectively. Hint: The colour of a shape is
changed using the Brush.Color property.

b. When you click on the [Caution] button, the circle shape in the middle must change to yellow and the colour
of the other two shapes (Stop and Go!) must turn to maroon and green respectively.

c. When you click on the [Go] button, the circle shape at the bottom must change to lime and the colour of the
other two shapes (Stop and Caution) must turn to maroon and olive respectively.

Example:

btnStop is clicked btnCaution is clicked btnGo! is clicked

7. Use the knowledge and skills that you gained in this chapter and create a Delphi application to simulate a card
for a special occasion. You can choose to make a birthday card, Valentine’s day card, Mother’s day card,
invitation to a party, and so on. Refer to the SpecialOccasion_p project for some inspiration.

8. Open the project, FaultyApp_p.
The code contains syntax errors. Find the errors and correct all the errors. Once you think that you have
corrected all the errors, run to program to see if it compiles. If it does not compile, it means that you have not
corrected all the errors. Repeat the process until all errors are corrected and the program compiles correctly,
then click the buttons to see what happens.

IT-Practical-LB-Gr10 INK06.indb 34 2019/09/26 09:54

35TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS

CHAPTER UNITS

Unit 3.1 Data types

Unit 3.2 Variable and component names

Unit 3.3 Declaring variables and components

Unit 3.4 Assigning values to variables

Unit 3.5 Converting data types

Unit 3.6 Errors

Learning outcomes

At the end of this chapter, you should be able to:
● explore the use of variables
● use descriptive variable and component names, as well as correct naming conventions
● assign values to variables
● explore data types such as integers, strings, � oats, Boolean
● identify, categorise and � x errors.

INTRODUCTION
Imagine that you had an invisible box that could store information. You could
place anything that you needed to keep or remember (like a birthdate or phone
number) inside the box. Then, when you need the information, you could simply
� nd the information inside the box.

There are several advantages to using this invisible box:
● The box can store data. You can place data in the box now (when you have

access to it) and use it later (when you may need it).
● The box always stays in the same place. This means that, whenever you

need to access the data, you know exactly where to look.
● The box only stores one piece of data at a time.
● The data inside the box can change. Even though the box can store only

one piece of data at a time, you can replace the old data with new data
whenever you need to.

● You can create as many invisible boxes as you need.

VARIABLES AND
COMPONENTS 3

CHAPTER

TERM 1

IT-Practical-LB-Gr10 INK06.indb 35 2019/09/26 09:54

36 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In programming, we have an invisible box we use. We refer to this invisible box as
a variable. A variable refers to a memory location that can hold one item of data
at any given time. Each variable in Delphi is given a unique name and can be used
to store data. You simply need to refer to the variable’s name when you must
access the data stored at a particular memory location. Variables can only store
one piece of information at a time, but you can change the variable’s value as
often as you want to.

In this chapter, you will learn the following:
● different data types
● variable naming convention
● variable declarations
● assigning values to variables
● converting certain variable types to another type (typecasting)
● understanding and � xing basic programming errors.

IT-Practical-LB-Gr10 INK06.indb 36 2019/09/26 09:54

37TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.1 Data types

UNIT

3.1 Data types

A variable refers to a memory location that can store data of a particular
data type. Just like variables in Mathematics, variables in programming
can only hold one value at a time. Whenever you create a new variable in
Delphi, you must indicate what type of data the variable will store.

This year, you will work with the following � ve data types:

DATA TYPE DESCRIPTION

String Strings are made up of a sequence of numbers, letters and symbols. A string variable can contain anything from a
single character to multiple characters.

Examples of string data:
● ‘Stefan’
● ‘P@sswOrd’
● ‘True’
● ‘The brown fox jumps over the fence!’
● ‘123’

NOTE:
● In Delphi, a string must be included between single quotation marks as shown above.
● A number within quotes refer to a string. This means that it cannot be used in numerical calculations.

Char Char represents a single character, such as a letter, symbol or digit.

Examples of char data:
● ‘A’
● ‘*’
● ‘0’

NOTE:
● A digit with single quotation marks will be treated as char, for example, ‘2’. This means that it cannot be used in

numerical calculations.

Integer An integer can contain any positive or negative number without a decimal point. Integers can be used in numerical
calculations.

Examples of integer data:
● 100
● -5
● 12435

Real A real number is a positive or negative decimal number. You can perform numerical calculations on real numbers.

Examples of real data:
● 12.3
● -1.0

Boolean A Boolean value can only be one of two values, that is, it can either be True or False. This is often used in programs
where a speci� c task is only complete if a speci� c condition is met.

Examples of Boolean data:
● True
● False

NOTE:
● Boolean values are not included in single quotation marks because they are not strings.

Take note

Variables in a computer program are
similar to ‘boxes’ where information can
be kept, maintained and referred to.

IT-Practical-LB-Gr10 INK06.indb 37 2019/09/26 09:54

38 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

To see how these variable types are used, work through the following
guided activity.

Guided Activity 3.1 Variable types

Write down the data type for each of the following:

3.1.1 Kagiso

3.1.2 17

3.1.3 ?

3.1.4 14.3

3.1.5 False

3.1.6 Numbers should be stored as integers

3.1.7 005

3.1.8 18142.23779

3.1.9 True

3.1.10 12i34

Activity 3.1

3.1.1 What is a variable?

a. a number

b. a place in memory that keeps a data value

c. a data value that cannot change

3.1.2 What is a string?

a. a type of variable that hold data values made up of ordered sequences of
characters

b. a data type that holds letters

c. a type of variable that hold characters

3.1.3 Determine whether the following statements are true or false. If false, correct the
statement to be true.

a. A variable of type string can store a single character.

b. A variable of type integer can store a real number.

c. A variable of type real can store an integer number.

d. A variable of type string can store values that contain special characters such
as ‘*’.

e. A variable of type char can only store a single digit or a single character.

f. A variable of type Boolean can only store one of two values: True or False.

3.1.4 You have been asked to create an application to capture the following information:

List the variables you will need as well as their types.

Did you know

Only strings and chars are
surrounded by quotation
marks. Numbers and
Boolean values are not.

IT-Practical-LB-Gr10 INK06.indb 38 2019/09/26 09:54

39TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.2 Variable and component names

In Chapter 2, you may have noticed that we spent time giving each component
a descriptive name. This helps makes the code easier to understand.

To ensure that everyone names their variables in the same way, different
programming languages have different naming conventions. Naming
conventions are mainly used so that programmers can understand one another’s
code. Other than the rules below, you can name your variables whatever you
want. Some of the naming conventions are simply a guideline to make the
program easier to understand, while others are rules that will stop your program
from compiling if they are not followed.

In Delphi the naming rules for variable names are:
● all variable and component names must be unique
● names may not contain spaces
● names may not start with a number, but they can contain a number
● names may not contain any special characters (like exclamation marks)

except for underscores (_).

Here are some naming conventions used for variables:
● variable names should describe the data they will contain. For example:

variable name: Amount for a variable that will hold monetary data
● names should use CamelCase. This means the � rst word or letter is in

lowercase, and each word afterwards starts with an uppercase letter, for
example, rAmountPaid

● variable names should start with a single letter pre� x describing the data
type the variable will hold.

 Here are some examples:

DATA TYPE PREFIX EXAMPLES

String s sName

Char c cCode

Integer i iNumber

Real r rAmountPaid

Boolean b bCheckedIn

Naming convention for components:
● component names should describe the task they will perform or the data

they will hold
● names should use CamelCase.
● component names should start with a three letters pre� x that describes the

component type.

Did you know

The Microsoft Windows
operating system is made
up of 50 million lines of
code. Can you imagine
trying to � gure out how the
code works if all the
variables have names like
‘String1’ or ‘x’?

Watch out!

Variable names have no
impact on the values stored
in variables. They simply
make it easier for you to
understand what the
variable should be used for.

Variable and component names3.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 39 2019/09/26 09:54

40 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

 Here are some examples:

COMPONENT PREFIX EXAMPLES

Form frm frmChangeColour

Button btn btnChange

label lbl lblMessage

Image img imgCat

Refer to Annexure C for a detailed list of components and their pre� xes.

Activity 3.2

3.2.1 State whether the following are TRUE or FALSE. If false, motivate why it is not true.

When naming Delphi variables:

a. Variable names may start with a number or a letter but may not contain any
special characters.

b. Variable names should never start with a single letter that could describe the
type of variable it is.

c. Variable names may only contain lowercase letters and you can include spaces
in the name.

3.2.2 Look at the following GUI, and predict what each component will do based on the
variable name that has been assigned to it:

lblHeading

btnCalcAmount

lblAmount

Input
lblArea

edtLength

edtWidth

btnCalcArea

Output

Did you know

You can use a label
component to place a
heading, or a description of
what should be in a
component or even to
display output.

IT-Practical-LB-Gr10 INK06.indb 40 2019/09/26 09:54

41TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.3 Declaring variables and Components

DECLARING VARIABLES
Before you can start using a variable in Delphi, you must tell Delphi to reserve
memory space where the variable values can be kept. That is, you need to tell
Delphi what the variable’s name will be and what type of data you will store in
the variable.

The code below shows the syntax for declaring a variable.
Variables are declared in the programunder the keyword var.

var //Start of section of variables
 VariableName1 : <DataType1>;
 VariableName2, VariableName3, VariableName4 :
<DataType2>;

In the example above, you should take note of the following:
● The var statement is used to tell Delphi that variables will be declared.
● Variables are declared by typing the variable’s name, followed by a colon (:)

followed by the variable’s type, followed by a semicolon (;).
● Variable de� nitions are indented (i.e. there is a little space before them). This

makes your code easier to read.
● Multiple variables of the same type can be declared on one line, as long as

they are separated by commas.

The code below shows an example of different types of variables being declared
in Delphi.

Declaring a variable
var
 rTotal : Real;
 iMinimum, iMaximum : Integer;
 sName : String;
 cGender : Char;
 bValid : Boolean;

When the program is executed, memory locations are allocated to the variables
at runtime.

Memory Cell / location

Address

Variable Value
Name

iNumber := 5;

New words

keyword – a word with a
prede� ned meaning in a
programming language.
You cannot use keywords
as variable names. It’s for
this reason that each new
variable has to be declared
before use.

Did you know

The process of creating a
variable by giving it a name
and type is known as
declaring the variable.

Take note

The value of variables is
only stored in your
computer’s memory. When
your program is closed, the
variable and its value
disappear from your
computer’s memory.

Declaring variables and Components3.3

UNIT

IT-Practical-LB-Gr10 INK06.indb 41 2019/09/26 09:54

42 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In the case of the variable declaration above, one memory location is allocated per
variable. The number of bytes allocated to a variable depends on its data type.

Guided Activity 3.2 Declaring variables

Using a pen and paper, write down how you would declare the variables needed to store the
following information. You need to use descriptive names and decide on a suitable data type
for each variable.

3.2.1 0.379

3.2.2 True

3.2.3 ‘f’

3.2.4 1725

3.2.5 0.657

3.2.6 0152973208

3.2.7 910229 0056 08 3

3.2.8 π

Once a variable has been declared, you can only store the declared or compatible
type of data in it. We can store integers in real variables BUT not real values in
integer variables. An integer can be represented as a real number, but a real
number cannot be represented as an integer. Trying to store the incorrect type of
data for a variable will result in an ‘Incompatible Type’ error.

Guided Activity 3.3 Variables

Study the following variables

sName, sSurname : string;
cGender : char;
iAge : integer;
sEmailAddress : string;
sMobileNumber : string;
bPensioner : boolean;
iOrderQuantity : integer;
rPrice : real;

3.3.1 Identify different examples of variables from those provided above that meet the
following requirements:

a. A variable that contains a number without a decimal value.

b. A variable that contains a special character (e.g. #, %).

c. A variable that contains a number with a decimal value.

d. A variable name that contains a single character only.

e. A variable name that contains the value true or false.

f. A variable name that contains letters only.

3.3.2 Explain why:

a. sMobileNumber is declared as a string type.

b. bPensioner is declared as a Boolean type.

c. rPrice is declared as a real type.

Take note

Read the section on data
representation in your
Theory Book about bits
and bytes.

DATA
TYPE

NUMBER
OF
BYTES

Integer 4 bytes

Real 8 bytes

String available
memory

Character 2 bytes

Boolean 2 bytes

IT-Practical-LB-Gr10 INK06.indb 42 2019/09/26 09:54

43TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.3 Declaring variables and Components

DECLARING COMPONENTS
When you place a component onto a form, Delphi automatically inserts the declarations in the Type
section of the code. The example below shows all the components placed on the form. The component
name appears on the left-hand side of the colon and the data type on the right-hand side.

type
TfrmReport = class (TForm)
 edtName: TEdit;
 edtSubject: TEdit;
 edtMark1: TEdit;
 edtMark2: TEdit;
 lblName: TLabel;
 lblSubject: TLabel;
 lblMark1: TLabel;
 lblMark2: TLabel;
 lblOutput: TLabel;
 lblReport: TLabel;
 lblMarkOutput1: TLabel;
 lblMarkOutput2: TLabel;
 lblMarkAverage: TLabel;
 btnGenerate: TButton;
 pnlInput: TPanel;
 pnlOutput: TPanel;
 lblInput: TLabel;

Look at this example to help you understand this.

Example 3.1 Report card variables

Use the report card user interface and identi� ed variables to create the four variables inside the application.

To do this:

1. Open the project stored in your 03 – Report Card folder.

2. Select the [Generate] button in the Designer screen.

3. Double click btnGenerate to do the code.

4. Inside the Code screen, � nd the procedure called TfrmReport.btnGenerateClick.

IT-Practical-LB-Gr10 INK06.indb 43 2019/09/26 09:54

44 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 3.1 Report card variables continued

5. Add a few empty lines between the procedure’s name and the begin.

procedure TfrmReport.btnGenerateClick(Sender: TObject);
begin
end;
end.

6. Add the var keyword underneath the procedure’s name in the space that you have created.
7. Declare the following two string variables: sName and sSubject.
8. Declare the following two integer variables: ‘iMark1’ and ‘iMark2.

The variable declaration should now look as follows:

procedure TfrmReport.btnGenerateClick(Sender: TObject);
var
 sName, sSubject : String;
 iMark1, iMark2 : Integer;
begin
 ….
end;
end.

9. Save and run your application. If the variables were declared correctly, the
application should open.

Well done! You have just declared your � rst set of variables in an application.

Activity 3.3

3.3.1 Which statement in Delphi tells it that the statements to follow are variable declarations?

3.3.2 What is the purpose of a variable declaration?

3.3.3 What is required to declare a variable?

3.3.4 Identify the errors in the following variable declarations.

Var
 iNumber = Integer;
 sGrade := String;
 bStatus : Boolean
 cDigit = char;
 rNumber, iTotal : Real;
 sGrade : integer;

Copy this table and complete it. Brie� y describe each error and correct the error.

DECLARATION ERROR BRIEFLY DESCRIBE THE ERROR CORRECT DECLARATION STATEMENT

Take note

The two strings are
declared on the
same line with the
variable names
separated by a
comma. The two
integers are also
declared on the
same line, separated
by a comma.

IT-Practical-LB-Gr10 INK06.indb 44 2019/09/26 09:54

45TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.4 Assigning values to variables

Once you have declared your variables, you can assign values to
them using an assignment statement. An assignment statement
consists of a variable, an assignment operator and a value.

The table below shows how variables can be assigned in Delphi.

VARIABLE OPERATOR VALUE ASSIGNMENT STATEMENT

iNumber

bStatus

sName

:=

:=

:=

12;

True;

‘John’;

iNumber := 12;

bStatus := True;

sName := ‘John’;

NOTE:
● Values are assigned in Delphi using the colon-equals assignment operator (:=).
● The variable name appears on the left-hand side of the assignment operator.
● The values being assigned to the variables appear on the right-hand side of the assignment operator.
● To ensure the value is assigned successfully, the value on the right of the assignment operator must

be of the same type as the variable or of a compatible type.
● Once a value has been assigned to a variable, it overwrites/replaces any existing value stored in

the variable.

The code snippet below shows how you can assign values to different types of variables.

Assigning values
VAR
 sName : string;
 iNumber : integer;
 rAverage : real;
 bPass : Boolean;

begin
 sName := 'Kagiso';

 iNumber := 5;

 rAverage := 67.74;

 bPass := True;
end;

Assigning values to variables3.4

UNIT

iNumber := 12
Assignment statement

variable operator value

IT-Practical-LB-Gr10 INK06.indb 45 2019/09/26 09:54

46 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

You can also change the data value stored in a variable, using assignment. This causes the value to be
copied into the memory location, overwriting what was in there before.

Changing values
VAR
 sName : string;
 iMark : integer;

begin
 sName := edit1.text
 //if Kagiso is Entered in edit1
 //sName will have the value Kagiso;

 iMark := 75;

 iMark := 77;
 //The 75 in iMark will be replaced
 //with 77
end;

1ST ASSIGNMENT 2ND ASSIGNMENT

Variable sMyName
(sMyName’s
content is
‘Kagiso’)

Variable sMyName
(sMyName’s content
is ‘Mary’)

Value Kagiso
New Value for
sMyName

Mary

Memory
Address

0012FC44
(sMyName’s
address is
0012FC44)

Memory Address 0012FC44
(sMyName’s
address is
0012FC44)

Watch out!

When a new value is assigned the previous value is overwritten/replaced.

Watch out!

A variable is a symbolic name for (or reference to) a value stored in memory. Every variable has a name, a type, a
value and a location:

● Name: The name is symbolic and is how the programmer accesses the value of the variable. Every variable
must have a unique name.

● Type: The type represents what ‘kind’ of data is stored within the variable.
● Value: The value represents the contents of the variable. It can change over time. When a new value is assigned

to a variable, the existing value is replaced by the new value.
● Location: The memory cell where the value is kept.

IT-Practical-LB-Gr10 INK06.indb 46 2019/09/26 09:54

47TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.4 Assigning values to variables

In the next example, you will learn how to assign values to the variables in your report card application.

Example 3.2 Assigning report card values

To assign values to the variables in your report card application:

1. Open the project stored in your 03 – Report Card folder.

2. Open the Code screen of your application and � nd the TfrmReport.btnGenerateClick procedure.

3. Assign the text entered into the edtName component to the sName variable using the code shown below.

Assigning a value
sName := edtName.Text;

Access the component’s property by using the component’s name, followed by a full stop, followed by the property.
This can be used to both assign a value to a property and to read a value from a property. In the code above, the
edtName component’s text value is assigned to the sName variable.

4. Using similar code, assign the text entered into the edtSubject textbox to the sSubject variable.

Assigning a value
sSubject := edtSubject.Text;

With both the learner’s name and the subject stored in a variable, you can now write these values to the output
labels. To do this:

5. Assign the value of the sName string to the lblOutput caption, as shown below:

Assigning a value to a property
lblOutput.Caption := sName;

Where the previous code snippets read the value from a component and assigned it to a variable, this code does the
reverse. It takes the value stored in the ‘sName’ variable and assigns it to the output label’s caption.

6. Assign the value of the sSubject string to the lblSubject caption.

Assigning a value to a property
lblSubject.Caption := sSubject;

7. Save and run your application. You can now
enter values in the textboxes in the Input
section and write them to the labels in the
Output section by pressing the
[Generate] button.

Congratulations, you have just used variables to
store information from your application and then
display that information on your components.
Later in this chapter, you will learn how the string
values from the Mark 1 and Mark 2 textboxes
can be saved as integer variables.

Watch out!

A variable can only store one value at a time. If you assign a new value to it, you will
overwrite (or delete) the previous value.

IT-Practical-LB-Gr10 INK06.indb 47 2019/09/26 09:54

48 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 3.4

Open the Delphi program StringsToThings_p from the 03 – StringsToThings folder and write code for btnGetAndDisplay
that will display the information entered through each edit component on the corresponding label component.

Take note

There are only a few things you can do with a variable:
Consider the statement:

iNextNumber := iNumber + 1;
● Create a variable (using the correct naming convention).
● Put some value into the variable using an assignment statement, for example, iNextNumber;
● Use the value of the variable by simply writing the name of the variable, for example, iNumber.

Watch out!

Assigning the value of variable A to variable B will never affect the value of variable A. In this situation, a copy of
variable A’s value is being assigned to variable B.

IT-Practical-LB-Gr10 INK06.indb 48 2019/09/26 09:54

49TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.5 Converting data types

EDIT COMPONENT
In Chapter 2 you used the Edit component to enter data. The Edit component
displays text that can be entered at runtime or design time. The Edit component,
like all the other components that you studied previously, has properties as well.
You can change the properties, such as font, text, maxlength, readOnly and
PasswordChar of an Edit component.

Label Edit

In the illustration above there are two components. These are a Label and an Edit

component. The Label prompts the user with a meaningful message of what
must be entered in the Edit component. Without the Label prompt, the user will
be left guessing what they need to enter in the Edit component.

The code to read data from an Edit component and store it in a variable is:
sName := edtName.text;

CONVERTING DATA TYPES
When data or values are read from an Edit

component, it is always of type string. This
poses a problem when you want to enter
numeric values that will be used in calculations.
For example, if you enter two test marks using
Edit components, and you want to � nd the
average of these two test marks, you will have to
convert these values from string to integers.

To convert a string to an integer:
sMark := edtMark.text;
iMark := StrToInt(sMark);
lblMessage.caption := IntToStr(iMark);

You can also convert between different data types. This conversion process is
called casting.

Take note

The text property of the Edit
box is used to read text
from the Edit box and is
assigned to a string
variable, sName.

Take note

● The data is read from the edit component, edtMark, and assigned
to the variable, sMark.

● The string value in the sMark variable is converted to integer
using the StrToInt function and the value is assigned to the
integer variable, iMark.

● To display the integer value in a label, you need to convert the
integer value to a string before it can be assigned to the caption
property of the label. The conversion from integer to string is
achieved using the IntToStr function.

● You can combine statements 1 and 2 into one statement as
follows: iMark := StrToInt(edtMark.text).

Converting data types3.5

UNIT

IT-Practical-LB-Gr10 INK06.indb 49 2019/09/26 09:54

50 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

To convert (or cast) text to numbers and numbers to text, you can use the following Delphi functions.

CONVERSION FUNCTION DESCRIPTION EXAMPLE/S

StrToInt Converts a string value to an integer
value.

iNum := StrToInt(‘500’);

iAge := StrToInt(edtAge.text);

StrToFloat Converts a string to a real number rAmount := StrToFloat(‘500.14’);

rLength := StrToFloat(edtLength.text);

IntToStr Converts an integer value to a string value sPostalCode := IntToStr(4450);

iEmployeeNumber := 1254672;

sEmpNum := IntToStr(iEmployeeNumber);

FloatToStr Converts a real value to a string value rAverage := (125.56+45.23)/2

sAverage := FloatToStr(rAverage);

Did you know

Float is short for � oating point numbers. Real numbers are � oating point numbers.

To see how these commands are used in practice, work through the following guided activity.

Guided Activity 3.4 Converting values to numbers

3.4.1 For each of the functions below, write down the variable’s value and type.

a. x := FloatToStr(7321.52);

b. y := StrToFloat(‘121.3’);

c. z := StrToInt(‘15’);

d. t := IntToStr(112);

3.4.2 Indicate whether each of the following functions has the correct or incorrect input. If the input is incorrect,
provide a reason.

a. StrToInt(‘1250’);

b. StrToFloat(‘3’);

c. FloatToStr(‘10.5’);

d. IntToStr(‘321’);

Example 3.3 Report card casting

A user must enter the name, subject and two marks
for a learner and calculate the average of the two
marks. Display the subject name, marks and
average as a term report.

1. Open the project, ReportCard_p.dproj that you
worked on in Example 3.2.

IT-Practical-LB-Gr10 INK06.indb 50 2019/09/26 09:54

51TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.5 Converting data types

Example 3.3 Report card casting continued

2. Double click on the [Generate] button to open the Code screen.

3. Assign the text entered into the edtMark1 component to the iMark1 integer variable using the code shown
below.

Assigning a value
iMark1 := StrToInt(edtMark1.Text);

Looking at the right-side of this code, you start by reading the text stored in the edtMark1 component. Since the text
stored in these textboxes are always strings, you need to use the StrToInt function to convert the string to an integer.
Once it has been converted, you can assign the integer value to the iMark1 integer variable.

4. Assign the text entered into the edtMark2 component to the iMark2 integer variable.

iMark2 := StrToInt(edtMark2.Text);

5. Calculate the average of the two test marks. Remember your BODMAS rules.

6. To display the marks in the lblMark1 and lblMark2 labels; add the following lines of code:

 lblMark1.Caption := IntToStr(iMark1);
 lblMark2.Caption := IntToStr(iMark2);

In � rst line the integer variable iMark1 is converted to a string value and assigned to the caption of the label.

7. To display the average on the label lblAverage, convert the real average to string:

lblAverage.Caption := FloatToStr(rAverage);

8. Save and run the application

IT-Practical-LB-Gr10 INK06.indb 51 2019/09/26 09:54

52 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 3.5 Name and Surname Swap application

The name and surname have been stored in the wrong order. The algorithm to swap the
name and surname is as follows:
● Store the text entered in the name component in a variable, sName
● Store the text enter in the surname component in a variable, sSurname
● Declare a third variable, sPlaceholder
● Move the value of sName to sPlaceholder
● Move the value of sSurname to sName
● Move the value of sPlaceholder to sSurname
● Display the values of sName and sSurname on edtName and lblSurname

Now that you have a Name and Surname swap algorithm, you can implement it in a program.

3.5.1 Create a project NameSwap_p.

3.5.2 Create the interface as shown below:

3.5.3 Create an OnClick event for the [Swap] button to swap the name and surname.

3.5.4 Save and run the project.

Activity 3.5

Create the following short Delphi programs that will help you practice what you just learned:

3.5.1 Program 1:

Create a project called School_p.
At school, you, your teachers and
your principal may all be
interested in different information.
For this program, you need to
create an application that stores
the followingsix pieces of
information usingvariables:

● The next public holiday is on 21 March.
● In the previous year, 99% of learners passed matric.
● This year’s exam dates start in November.
● In mathematics, learners struggle the most to understand the laws of

exponents.
● The tuck shop will offer a 20% discount on all cooked food next week.
● The school is currently ranked as the third best school for academics in the

province.

Take note

When you assign
something to a variable, it
will delete the content that
is already in there, and put
only the new content in.
You need to place what you
want to use later in another
variable, called
sPlaceholder in this case,
to use it later.

IT-Practical-LB-Gr10 INK06.indb 52 2019/09/26 09:54

53TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.5 Converting data types

Activity 3.5 continued

Once this information has been stored in variables, allow the user to click on one of
three buttons: Student, Teacher or Headmaster. Depending on the button they click,
display two pieces of information that would be useful or interesting to that person.

3.5.2 Program 2:

Open the Delphi program ShoppingListBasket_p provided in the 03 – Shopping
List folder.

The program uses TSpinEdit components to
select the quantity of the item
entered in the edit component

The user enters the shopping list
item, e.g. milk, then selects the
quantity from the corresponding
SpinEdit component. When all the
items are entered and their
quantities are selected, the item is displayed on the corresponding label component
once the [Display] button is clicked, e.g.

Write the code for the [Display] button that will display the item and quantity on the
[Label] button when the user clicks the [Display] button.

Take note

To access the value from the SpinEdit you must use its Value property. The Value
property contains an Integer value. Look at the following code:

iItem1 := sedQuantity1.Value;

To add the item and the quantity to the [Label] button, use the following code:

lblItem1.Caption := sItem1 + ' ' + IntToStr(iItem1);

The single quotes contain a space. It will ensure that a space appears between the item
name and the quantity value.

SpinEdit
component

Take note

The value property selected
from the SpinEdit is an
integer value. If you want to
display this value on the
Label component, you need
to convert it to a string type
� rst as the caption of the
label is a string.

IT-Practical-LB-Gr10 INK06.indb 53 2019/09/26 09:54

54 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Programming errors can generally be grouped into three categories:
● syntax errors
● runtime errors
● logic errors.

Since different errors require different solutions, identifying the type of error you
are encountering is an important � rst step in solving the problem. This unit will
look at each of these errors in more detail.

SYNTAX ERRORS
Syntax refers to the form and structure of the programming language, which
de� nes how the symbols and keywords must be combined to format a statement.
In Delphi, the compiler checks your code against this rule. If the compiler does
not understand the statement, then a syntax error is reported.

Common syntax errors include:
● leaving out a semicolon at the end of a statement
● we use a ‘begin …end’ block when grouping statements. Leaving out either

the begin or the end will result in a syntax error
● leaving out the command, var, when declaring variables
● assigning a variable using the equals to sign (=) instead of the assignment

operator (:=)
● misspelling variable names
● using keywords as variable names
● using variables that have not been declared
● not surrounding string values with the single quote marks.

For syntax errors, the IDE will generally warn you that you have made a mistake
and indicate the line in which the mistake occurs. Delphi will provide you with
information about the error in the Structure panel at the top left or the Messages
panel at the bottom of the Code screen. You can use the information provided to
correct the errors.

TOP TEN DISASTROUS
SOFTWARE BUGS

https://www.youtube.com/
watch?v=AGI371ht1N8

Errors3.6

UNIT

IT-Practical-LB-Gr10 INK06.indb 54 2019/09/26 09:54

55TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.6 Errors

RUNTIME ERRORS
The second type of error is known as a runtime error. These errors occur when
the program is running. For example, when division is taking place, the user
enters a zero for the divisor, the computer will immediately give a runtime error
because division by zero is inadmissible. In Delphi, a runtime error will display as
follows:

Runtime errors occur when you ask your program to do a task that is either
impossible or is impossible under certain circumstances. The program will then
terminate (shut down).

Another example of a runtime error occurs when a program expects an integer
as input, but the user enters a real number. The error only occurs when the
function StrToInt is executed.

While creating programs this year, you may run into many different runtime errors.
One way to solve a runtime error is to step through your program by seeing how
the value in variables changes with each step of the application. In this way you
can usually identify the point at which a mistake was made. You can also search
for the error code online to see if it helps you to identify the cause of the error.
Later in the year, you will be taught how to step through a program.

IT-Practical-LB-Gr10 INK06.indb 55 2019/09/26 09:54

56 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

LOGIC ERRORS
The � nal, and most dif� cult type of error to solve is a logic error. These errors
occur when there are errors in the logic of the program or algorithm. The program
compiles and runs correctly but produces the incorrect results.

Guided Activity 3.6 Identifying logic errors

The two snippets of code below are an attempt to swap a person’s name and surname.

SNIPPET ONE
SNAME := edtName.text;
SSurname := edtSurname.text;
SPlaceholder := sName;
SName := sSurname;
SSurname := sName;

SNIPPET TWO
SNAME := edtName.text;
SSurname := edtSurname.text;
SPlaceholder := sName;
SName := sSurname;
SSurname := sPlaceholder;

Work through both program snippets and answer the following questions.

3.6.1 Which one of the code snippets contains an error?

3.6.2 Explain the error

Copy and use the following table to record your � ndings for each program snippet:

LINE COMPONENT NAME VARIABLE NAME VARIABLE VALUE

1 EdtName.text SName

2

3

4

5

Activity 3.6

3.6.1 Your teacher will give you three small programs. The programs can be found in the
03 – Error 1, 03 – Error 2 and 03 – Error 3 folders. For each program:

a. � nd and � x any coding errors that you � nd in the programs.

b. write down each error, provide a short explanation of the error, the type of error
and the corrected code.

ERROR EXPLANATION OF ERROR TYPE OF ERROR CORRECTED CODE STATEMENT

IT-Practical-LB-Gr10 INK06.indb 56 2019/09/26 09:54

57TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.6 Consolidation

Consolidation

var
 dTotal : Double;
 rTotal : Real;
 iMinimum : Integer;
 sName : String;
 cGender : Char;
 bValid : Boolean;

Reserve memory space
to keep variable

iNumber := 12;
bStatus := True;
sName := ‘John’;

● Syntax errors
● Runtime errors
● Logic errors

● Memory (where variable value is kept)
● Memory address
● Associated with variable name

● Content of variable
● One piece of content

(value) at a time
● Speci� c type
● Values (content) can

change (replaced/
overwitten)

● String
● Char
● Integer
● Real
● Boolean
● Compatable types

● Reference to memory location
● Symbolic
● Unique
● Naming conventions

● StrToInt
● StrToFloat
● IntToStr
● IntToFloat
● FloatToStr
● FloatToInt

Consolidation activities Chapter 3: Variables And Components

1. In your own words, give a de� nition for the word ‘variable’ as it relates to computer programming.

2. List � ve Delphi naming rules and conventions for variables.

3. In your own words, what is the difference between an integer and real variable types?

4. What is the difference between syntax, runtime and logic errors.

5. What is the purpose of a variable name?

6. Describe the relationship between the variable name and the memory location.

7. Explain the purpose of converting data types.

8. Study the following code:

Var
 sName, sBirthDate : string;
 iAge : Integer;
 rHeight : real;
 cGender, cGrade : char;
 bSACitizen : Boolean;
Begin
 sName = 'Lerato';
 cGender := 'Female';
 iAge := 15
 rHeight := 1.66 m;
 sBirthDate := 12-09-2003;
 iAge := rHeight;
 bSACitizen := Yes;
 cGrade := '9';
End;

IT-Practical-LB-Gr10 INK06.indb 57 2019/09/26 09:54

58 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 3: Variables And Components continued

Identify the errors in the code. Brie� y describe each error and correct the error using the following table:

DECLARATION ERROR BRIEFLY DESCRIBE THE ERROR CORRECT DECLARATION STATEMENT

9. Study the following code and answer the questions that follow:

procedure TfrmPrizes.btnDisplayClick(Sender: TObject);
var
 sName, sSurname, sSubject:string;
 cInitial : char;
 rMarkAchieved, rClassAvg : real;
 iPosition : integer;
begin
 // assign value to the variables
 sName := edtName.Text;
 cInitial := edtInitial.text[1];
 sSurname := edtSurname.Text;
 sSubject := edtSubject.Text;
 rMarkAchieved := StrToFloat(edtHighMark.Text);
 rClassAvg := StrToFloat(edtClassAverage.text);
 iPosition := spdPlace.Value;
 // display the values from the variables
 lblName.Caption := sName;
 lblInitial.Caption := cInitial;
 lblSurname.Caption := sSurname;
 lblSubject.Caption := sSubject;
 lblMark.Caption := strToFloat(rMarkAchieved);
 lblAvg.Caption := fl oattostr(rClassAvg);
 lblPlace.Caption := inttostr(iPosition);
end;

Did you know

cInitial := edtInitial.text[1];

The [1] is the command to Delphi to use only the � rst character of the values in edtInitial.text. It ensures
that only ONE character is written to the variable. If there are more than 1, you will get an error message.

IT-Practical-LB-Gr10 INK06.indb 58 2019/09/26 09:54

59TERM 1 I CHAPTER 3 VARIABLES AND COMPONENTS I UNIT 3.6 Consolidation

Consolidation activities Chapter 3: Variables And Components continued

a. What data type was used to declare the sName variable?

b. What data type was used to declare the rClassAvg variable?

c. What data type was used to declare the cInitial variable?

d. Why would the line

lblMark.Caption := strToFloat(rMarkAchieved);

cause an error?

e. What is the purpose of ‘StrToFloat’ in the following code?

rClassAvg := StrToFloat(edtClassAverage.text);

f. Why would the code below be incorrect?

iPosition := StrToInt(spdPlace.Value);

g. Copy and complete the table to show the value that is saved in each of the variables when the program
is executed.

VARIABLE NAME DATA TYPE VALUE

sSurname

sSubject

cInitial

rClassAvg

iPosition

10. Create a Delphi project, Favourite_p, to implement the following � owchart:

Begin

End

Display
variables values

Get favourite
TV program

Assign name
to variable

Assign TV
program to

variable

Get
name

IT-Practical-LB-Gr10 INK06.indb 59 2019/09/26 09:54

60 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 3: Variables And Components continued

11. Create a Delphi program to do the following:

● Enter a user name
● Enter an e-mail address
● Enter a 4-digit pin number
● Display the user name
● Display the e-mail address
● Ask for con� rmation that the e-mail address is correct (Y/N) – user must enter Y or N.

a. Identify the components you need to use for the ‘Input’ and the ‘Output’

b. Declare the necessary variables and write the above code.

IT-Practical-LB-Gr10 INK06.indb 60 2019/09/26 09:54

61TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI

CHAPTER UNITS

Unit 4.1 Basic operators

Unit 4.2 Formatting numbers

Unit 4.3 Mathematical functions

Unit 4.4 Variable scope

 Learning outcomes

At the end of this chapter you should be able to:

● identify, describe and apply different mathematical operators
● use the correct order of operations to solve mathematical problems
● explain and apply mathematical functions such as random, round and square root
● create Delphi programs to solve basic mathematical problems
● apply basic algorithms in programs
● use planning tools to plan solutions to problems before implementation in Delphi
● explain the difference between local and global variables and use them appropriately.

INTRODUCTION
Many mathematical problems can be solved using programming. For example, in
game pictured below, the computer will have to:
● calculate the high score obtained by a player
● determine which level a player is on
● keep the score of the current game
● keep a record of the time of the current

game.

For the computer program to perform the
tasks mentioned above, the program must
be able to perform mathematical
calculations ranging from basic to more
complex ones.

In this chapter, you will learn how to solve
basic mathematical problems using Delphi.
You will also learn how to use planning
tools to assist you when making your
applications.

Figure 4.1: The computer program
uses mathematical calculations for
even the most basic games
(Source: Image by Cezary Tomczak)

SOLVING BASIC MATHEMATICAL
PROBLEMS USING DELPHI 4

CHAPTER

TERM 1

IT-Practical-LB-Gr10 INK06.indb 61 2019/09/26 09:54

62 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Mathematical operators are the symbols used to tell Delphi to add, subtract, multiply or divide. In this unit you
will learn how to use basic mathematical operators to perform calculations with integers and real numbers.

NAME SYMBOL D ESCRIPTION

Addition + Adds two values, for example:

iTotal := 2 + 1; // iTotal = 3

Subtraction - Subtracts the second value from the � rst. For example:

iTotal := 5 – 3; // iTotal = 2

Multiplication * Multiplies two values. For example:

iTotal := 2 * 4; // iTotal = 8

Real division / Divides the � rst value by the second. For example:

rTotal := 10 / 4; // rTotal = 2.5

Integer division div Divides the � rst number by the second, then discards the remainder. For example:

iResult := 10 div 3; // iResult = 3
This can only be used with integer values and the result is always an integer value.

Modulus mod Divides the � rst number by the second, then keeps only the remainder. For example:

iRemainder := 10 mod 3; // iRemainder = 1
This can only be used with integer values and the result is always an integer value.

Take note

Long division results in a quotient and a remainder:

The variable used to store the result of real division is
a real data type variable (rTotal) because the result
from the real division operator (/) will return a value
with a decimal value. Even if the numerator is exactly
divisible by the denominator, the result will still be a
real number. For example 10__

5
 , will result in 2.0. If you

try to store this variable in an integer variable, your
program will encounter a runtime error and crash.

Activity 4.1

Indicate whether the following expressions are valid or invalid. If valid, write down the answer to the calculation.
If invalid, give a reason for why you say so.

4.1.1 8 + 7 4.1.2 56.7 – 23.987

4.1.3 9 MOD 5 4.1.4 2 * 9

4.1.5 4.3 DIV 6 4.1.6 10___
4

4.1.7 9 DIV 2 4.1.8 7 DIV 3

4.1.9 6 MOD 9 4.1.10 6 DIV 9

4.1.11 8.5 MOD 4

Let’s look at some of the rules used for calculations when we are working in Delphi.

5

DIV MOD

128
025 r 3

– 0
12

– 10
28

– 25
3

Basic operators4.1

UNIT

IT-Practical-LB-Gr10 INK06.indb 62 2019/09/26 09:54

63TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.1 Basic operators

ORDER OF PRECEDENCE
When we evaluate basic mathematical operators in mathematical expressions,
they need to be evaluated using the BODMAS rule – just as you would do in
Mathematics. We refer to this as the order of precedence. The table below lists
the order of precedence used in Delphi:

OPERATOR PRECEDENCE

Brackets () Highest level

* / DIV MOD Second level – from left to right – whichever one comes � rst

+ – Third level – from left to right – whichever one comes � rst

Example 4.1

Evaluate the expression below:

2 + 3 *26 / (16 – 3) – 5

 = 2 + 3 * 26 / 13 – 5 (Level 1 – brackets)

 = 2 + 78 / 13 – 5 (Level 2 – multiplication)

 = 2 + 6 – 5 (Level 2 –division)

 = 8 – 5 (Level 3 – addition)

 = 3 (Level 3 – subtraction)

Activity 4.2

Evaluate the expressions below:

4.2.1 (12 + 4 * 4) DIV 2 4.2.2 12 + 4 * 4 DIV 2

4.2.3 10 – 4 / 2* 6 + 3 4.2.4 8 * 4 – 17 / 2 + 3

4.2.5 4 * (6/2 + 3) 4.2.6 4 * 6 / 2/4 + 3

4.2.7 17 DIV 2 * (4 * 5 +(10 – 1)) * 2.3 4.2.8 23 MOD 3 * (13 DIV 2 –5)

4.2.9 69 MOD (3 + 5) + 1.1 * 4.7 4.2.10 (32 MOD 7) * (26 DIV 8)

USING A TRACE TABLE
A trace table is a tool used to track how the value of variables change in a program
after each line of code is executed. This tool is helpful for testing an algorithm
because it helps you to determine if an algorithm gives the correct result. If the
result is not correct, the trace table can help you to identify the logical error
responsible for the incorrect result.

To create a trace table:
● identify all the variables
● create a table with a column for each line number, a separate column for

each variable, and a column for the output
● follow the code line-by-line and write down the new value of the variable that

changed.

Take note

Operators with the same
importance are executed
from left to right, in the
order in which they appear.

LEARNING ABOUT
ORDER OF OPERATIONS

https://www.youtube.com/
watch?v=dAgfnK528RA

IT-Practical-LB-Gr10 INK06.indb 63 2019/09/26 09:55

64 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 4.2

A person buys two items and receives a 10% discount on the total price. The VAT of 15% is calculated on the
discounted total. Calculate the total before the discount was applied, the VAT amount payable, and the total due after
VAT was added on. Display the � nal total due.

LINE NUMBER ALGORITHM

Line 1 Price1 = 19.40

Line 2 Price2 = 10.60

Line 3 Total = Price1 + Price2

Line 4 Total = Total * 0.90

Line 5 Vat = Total * 0.15

Line 6 Total = Total + VAT

Line 7 Display Total

Use the trace table below to trace through the algorithm above:

LINE NUMBER PRICE1 PRICE2 TOTAL VAT OUTPUT

1 19.40

2 10.60

3 30.00

4 27.00

5 4.05

6 31.05

7 31.05

The Delphi Code for the algorithm:

…
Var
 rPrice1, rPrice2, rTotal, rVat : real;
Begin
 rPrice1 := 19.40;
 rPrice2 := 10.60;
 rTotal := rPrice1 + rPrice2;
 rTotal := rTotal * 0.90;
 rVat := rTotal * 0.15;
 rTotal := rTotal + rVat;
 lblTotal.Caption := FloatToStr(rTotal);
End;
….

USING AN INPUT-PROCESSING-OUTPUT (IPO) TABLE TO PLAN A PROGRAM
An Input-Processing-Output (IPO) table is a planning tool that can be used to record your inputs,
processing and output. Usually, before you write a program, you need to determine:
● inputs
● processing
● outputs.

IT-Practical-LB-Gr10 INK06.indb 64 2019/09/26 09:55

65TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.1 Basic operators

Example 4.3

Write a program that can be used to convert temperature from degree Fahrenheit to degree Celsius.

The formula to convert degree Fahrenheit to degree Celsius is: (Fahrenheit –32)*5/9

INPUT PROCESSING OUTPUT

DegreeFahrenheit DegreeCelsius=(DegreeFahrenheit –32)*5/9 DegreeCelsius

The Delphi Code for the IPO:

…
Var
 rDegreeFahrenheit, rDegreeCelsius : real;
Begin
 rDegreeFahrenheit := StrToFloat(edtFahrenheit.Text);
 rDegreeCelsius := (DegreeFahrenheit-32) * 5/9;
 lblCelsius.Caption := FloatToStr(rDegreeCelsius);
End;
….

Example 4.4

Three friends Tom, Jerry and Andile need to share sweets in the ratio 3:4:5 respectively. The number of sweets is
provided by the user. Part of a sweet will not be shared. Calculate and display how many sweets each friend will
receive and how many sweets will remain after sharing takes place.

INPUT PROCESSING OUTPUT

NumSweets Tom = NumSweets * 3 DIV 12

Jerry = NumSweets * 4 DIV 12

Andile = NumSweets * 5 DIV 12

LeftOver = NumSweets MOD 12

OR

LeftOver = NumSweets-(Tom+Jerry+Andile)

‘Tom’s Share: ‘,Tom

‘Jerry’s Share: ‘,Jerry

‘Andile’s Share: ‘,Andile

‘Number Remaining: ‘,LeftOver

Algorithm for the example:

LINE NUMBER ALGORITHM

Line 1 Read NumSweets

Line 2 Tom = NumSweets * 3 DIV 12

Line 3 Jerry = NumSweets * 4 DIV 12

Line 4 Andile = NumSweets * 5 DIV 12

Line 5 LeftOver = NumSweets MOD 12

Line 6 ‘Tom’s Share: ‘,Tom

Line 7 ‘Jerry’s Share:’,Jerry

Line 8 ‘Andile’s Share:’,Andile

Line 9 ‘Number Remaining: ‘,LeftOver

IT-Practical-LB-Gr10 INK06.indb 65 2019/09/26 09:55

66 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 4.4 continued

Use the trace table below to trace through the algorithm when the input for the number of sweets is 100.

Line Numbers NumSweets Tom Jerry Andile LeftOver Output

1 100

2 25

3 33

4 41

5 1

6 Tom’s share: 25

7 Jerry’s share: 33

8 Andile’s share: 41

9 Remaining sweets: 1

Stop

Activity 4.3

4.3.1 Provide the answers for the following calculations:

a. 7 + 2 – 9 × 1 b. 7 + (2 – 9) × 1

c. 13 + 12 / (5 – 1) d. (9 × 5 × 7) / 5 + 1

e. (12 × 5) × (3 + 2) / 3

4.3.2 Create a program Activities_p that will calculate and display the answers of the above problems ((a) – (e)).
The program can use the following user interface

Button 1 refers to problem a above, Button 2 refers to problem b above, and so on.

IT-Practical-LB-Gr10 INK06.indb 66 2019/09/26 09:55

67TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.1 Basic operators

Activity 4.4

The formula for calculating the area of a rectangle is the length of the rectangle multiplied by the width of the rectangle.
With this in mind:

4.4.1 Create an algorithm for calculating the area of a rectangular room.

4.4.2 a. The owner of the house plan pictured
here wants to tile the � oors of the
lounge andbedroom 2. Create an
algorithm for calculating the area that
needs to be tiled.

b. Create an IPO chart for tiling the
lounge and bedroom 2.

Consider the following items when
creating your algorithm and IPO chart.

 The input of your algorithm.

 The processing requirements and
steps of your algorithm.

 The output of your algorithm.

Activity 4.5

The code below was written to assist a school principal, who wants to build a soccer � eld. The principal required the
following calculations:

When the length and the width of the � eld is entered into the program, it should calculate the following:
● The area of the � eld – the formula for calculating the area is length × width
● The perimeter of the � eld – to calculate the perimeter you need to add each side of the � eld together
● The position of the half line – to determine the position of the half line, you need to � nd the middle of the

longest side.
Study the code below to determine if there are any errors:

procedure TfrmSoccerPitch.btnCalculateClick(Sender: TObject);
var rHalfLine:integer;
 iArea, iPerimeter:integer;
 iLength, iWidth:integer;
 sSummary:string;
begin

Line 1 iLength.caption:= StrToInt(edtLength.text);
Line 2 iArea := iLength * iWidth;
Line 3 iPerimeter := (iLength*2)/(iwidth *2);
Line 4 iWidth := StrToInt(edtWidth.Text);
Line 5 rHalfline:= iLength/2;
Line 6 lblArea.Caption := StrToInt(iArea)+ ' m';
Line 7 lblPerimeter.Caption := inttostr(iPerimeter)+ ' m';
Line 8 lblHalfLine.Caption:= IntToStr(rHalfLine)+ ' m';

4 m

3 m

IT-Practical-LB-Gr10 INK06.indb 67 2019/09/26 09:55

68 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 4.5 continued

A trace table will help you to identify line by line whether there are any errors. Use the table given below to trace
through the code for: iLength = 90; and iWidth = 45. When an error is found, report and correct it in the correction
table. The � rst error has been given to you as an example in the correction table.

TRACE TABLE

LINE
NUMBER

iLENGTH iWIDTH
iAREA
(LENGTH *
WIDTH)

iPERIMETER
(ADD ALL
FOUR SIDES)

rHALFLINE OUTPUT

CORRECTION TABLE

LINE
NUMBER

WHAT THE CODE SHOULD DO ERROR DESCRIPTION CORRECT THE CODE

1 Write the value from the edit
box to the length variable

Error message. Variables
do not have properties

iLength := StrToInt(edtLength.
text)

IT-Practical-LB-Gr10 INK06.indb 68 2019/09/26 09:55

69TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.2 Formatting numbers

In Delphi, you can format real numbers to display in a speci� c format. In this unit we will use the FloatToStrF
function to format real numbers. The FloatToStrF function converts a � oating point number (real number)
into a displayable string based on a given format.

The syntax of a FloatToStrF function is: FloatToStrF(Value, Format, precision, digits) where:
● Value refers to the real number that will be converted to string
● Precision refers to the total number of digits a number will display. If the number of digits in the Value

exceeds the total number of digits in the Precision, then the Value is rounded to the total number of
digits as per the Precision

● Format indicates how a Value will be formatted into a string. The formats that we will use this
year are:

FORMATS ALLOWED DESCRIPTION

ffCurrency Formats the value with the currency included

ffFixed Formats the value with the number of decimal places as speci� ed

Both Precision and Format control how a Value will be formatted when displayed as a string
● Digits indicates the number of places after the decimal comma

Here are some examples:

CODE DISPLAYED STRING

rVal:=452.769;

lblOut.Caption:=FloatToStrF(rVal,ffFixed,8,1);

452.8

rVal:=452.769;

lblOut.Caption:=FloatToStrF(rVal,ffFixed,4,2);

452.80

rAmount:=78.12;

lblOut.Caption:=FloatToStrF(rAmount,ffCurrency,8,2);

R78.12

Let’s use this information to help us � x the output for a VAT Calculator.

Example 4.5

To format the output numbers:

1. Open your VAT Calculator application provided in the
04 – VAT Calculator folder.

2. Select the Price label.

3. Find the Alignment property in the Object Inspector.

4. Change it to “taRightJustify”. This aligns the numbers
on the right, making it easier to read.

5. Resize the label so that it is as large as the
Value textbox.

6. Do the same for the VAT label and the Inclusive label.

7. Change the Alignment property of the Value textbox
to be “taRightJustify”.

8. Find the [Calculate] button’s OnClick event in the code.

Formatting numbers4.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 69 2019/09/26 09:55

70 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 4.5 continued

9. Change the code in the procedure so that the labels make use of the FormatCurr function as shown below:

Formatting output code
procedure TfrmVATCalculator.btnCalculateClick(Sender: TObject);
var
 rPrice, rVat, rInclusive : Real;
begin
 rPrice := StrToFloat(edtValue.Text);
 rVat := rPrice * 0.15;
 rInclusive := rPrice + rVat;

 lblPrice.Caption := FloatToStrF(rPrice, ffCurrency, 8,2);
 lblVat.Caption := FloatToStrF(rVat, ffCurrency, 8,2);
 lblInclusive.Caption := FloatToStrF(rInclusive, 8,2);
end;

It is important to note that the FormatCurr function returns a string value. As such, you do not need to convert
the real number to a string. The FormatCurr function is an alternative to using FloatToStrF and ffCurrency.

10. Save and run the application. The output should now be much easier to read!

Congratulations! While this technique might seem like a small thing, it can make your programs a lot clearer and
easier to use. It can also be used to create a format for numbers that are not currencies.

Activity 4.6

Write down format strings that will do the following:

4.6.1 Return a number that displays three digits and no decimal digits.

4.6.2 Return a number correct to two decimal digits.

4.6.3 Return a number as a South African currency (including cents).

Take note!

Surround your format string with single quotation marks. This shows that that it is a string.

IT-Practical-LB-Gr10 INK06.indb 70 2019/09/26 09:55

71TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.2 Formatting numbers

Activity 4.7

4.7.1 The formula to � nd the gradient of a straight line given two points A(x
1
,y

1
) and B(x

2
,y

2
) is:

m =
y

2
 – y

1

x
2
 – x

1

a. Open the Gradient_p project from the 04 – Gradient
folder. Write a program that will determine the x and
y-coordinates for Points A and B on a straight line using
SpinEdit components. (Hint: Use the object inspector and
set the min and max value of each SpinEdit component
to –10 and 10 respectively.)

b. Calculate and display the gradient of the line correct to
one decimal place.

4.7.2 In a diving competition, three judges score a participant.
The � nal score of the participant is calculated by determining
the average of the three scores and ignoring the decimal part.

Open the Scoring_p project from the 04 – Scoring folder.
Write code for the [Final Score] button.

4.7.3 Open the PreOrder_p project from the 04 – PreOrder
Calculator folder.

This program was created for learners who pre-order a
healthy lunch from the tuckshop. The program should be able
to give learners the value for how much they owe, but the
output of the program is wrong.

a. Use a trace table to identify the errors and correct the
errors in the code.

b. Once you have identi� ed all the errors, correct them. Run the program again to determine whether the
output is correct.

IT-Practical-LB-Gr10 INK06.indb 71 2019/09/26 09:55

72 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

UNIT

4.3 Mathematical functions

Functions are written by the developers of Delphi. It is a segment of pre-written programming code that
performs frequently performed tasks. So far you have worked with these functions: IntToStr, FloatToStr,
StringToFloat and StringToInt (the data conversion functions); and FloatToStrF (formatting functions).

In this chapter, you will learn about the following mathematical functions:
● SQR
● SQRT
● ROUND
● TRUNC
● RANDOM

As you type the function name, Delphi provides a list that gives you the function syntax as follows:
● the function keyword
● the function name, for example, Random
● the data required by the function, for example, (const aRange: integer)
● the return type of the function, for example, :integer.

When you use any mathematical function you need to add the word Math to the Uses section of the code.
This is shown in the example below:

When a function is used, we refer to it as being called. The data provided in the function call is called
argument/s.

Take note!

If you don’t add the word Math to the Uses section of the code, the Delphi compiler will return a syntax error.

SQR FUNCTION
The square (SQR) function calculates the square of a number (that is, the number multiplied by itself, for
example, 2 multiplied by 2).

SYNTAX OF THE SQR FUNCTION
 Sqr(Number)

The argument number can be either a positive or negative; integers or real numbers. The value returned
by the SQR function is dependent on the data type of the argument – it can be a real number or an integer.

Examples

rSquare := Sqr(4); // rSquare = 16
rSquare := Sqr(1.6); //rSquare = 2.56

iNum:=7;
lblMessage.Caption:=IntToStr(Sqr(INum)); // the number 49 will display in the label
The statement rSquare:=Sqr(4); is equivalent to rSquare:=4 * 4;

IT-Practical-LB-Gr10 INK06.indb 72 2019/09/26 09:55

73TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.3 Mathematical functions

SQRT FUNCTION
The SQRT function calculates the square root of a number.

SYNTAX OF THE SQRT FUNCTION

 Sqrt(Number)

The argument number can be either integer or real. Just like in Mathematics, you
can only � nd the square root of a positive number. The SQRT function always
returns a real number.

Examples

rRoot := Sqrt(16); // rRoot = 4.0
rVal := Sqrt(6.4009) ; // rVal=2.53

ROUND
The ROUND function is used to round a real number to the nearest integer
number.

SYNTAX OF THE ROUND FUNCTION

 Round(Number);

The argument number is always a real number. It can be negative or positive. If
the real number has a decimal value below 0.5, it will be rounded down. If the
decimal value is above 0.5, it will be rounded up. If the decimal value is exactly
0.5, it will be rounded to the nearest even number (which could be up or down).

The table below shows how this works.

RVALUE FUNCTION RESULT

12.4 Round(rValue) 12

12.5 Round(rValue) 12

12.6 Round(rValue) 13

13.5 Round(rValue) 14

–12.4 Round(rValue) –12

–12.5 Round(rValue) –12

–12.6 Round(rValue) –13

–13.5 Round(rValue) –14

Examples

iAns := Round(2.4); // iAns = 2
iAns := Round(7.52); // iAns = 8
iAns := Round(8.52); // iAns = 9;
iAns := Round(8.5); // iAns = 8

Watch out!

A number with a decimal
value of 0.5 being rounded
to the nearest even number
can produce unexpected
results.

IT-Practical-LB-Gr10 INK06.indb 73 2019/09/26 09:55

74 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

TRUNC FUNCTION
The TRUNC function truncates (removes or ‘chops off’) the decimal part of a real
number. It returns an integer after the truncation.

SYNTAX OF THE TRUNC FUNCTION

 Trunc(Number);

The argument number is always a real number. The result is an integer. Important:
no rounding takes place.

Examples

iTrunc := Trunc(2.999); // iTrunc = 2
iTrunc := Trunc(2.4); // iTrunc = 2
iTrunc := Trunc (7.5); // iTrunc = 7

RANDOM FUNCTION
The RANDOM function is used to generate random numbers.

SYNTAX OF THE RANDOM FUNCTION
Random;
OR
Random(Number);

The RANDOM function has two different syntaxes:
● the RANDOM function without argument will generate a random decimal

number from 0 to less than 1
● In the RANDOM(Number) syntax the argument is type integer. It generates a

random number from 0 to Number-1, that is, if the argument is 6, then it will
generate a number from 0 to 5
To generate a number within a particular range a to b, we use the formula :
Random(b-a+1)+a. For example, to generate a random number in the range
10 to 100, the statement Random(100–10+1)+10

Examples

rRan := random; //the result is any random real number in the range 0 to less than 1

iRandom := Random(21) //the result is an Integer number in the range 0 to 20

iRandom := Random(51)+5 //the result is an Integer number in the range 5 to 55

The random function is useful in any program where randomness is important.
For example, in:
● board games like Tic Tac Toe, a RANDOM can be used to generate a

starting move
● word games like Hangman, RANDOM can be used to select a word from a list
● card games, RANDOM can be used to shuf� e the deck
● dice games, RANDOM can be used to roll the die.

IT-Practical-LB-Gr10 INK06.indb 74 2019/09/26 09:55

75TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.3 Mathematical functions

USE OF RANDOMIZE COMMAND
Delphi will often generate the same random number every time you run the program unless you use the
RANDOMIZE command before generating a random number. Here is an example of how to use the
RANDOMIZE command:

Randomize;
iRandom := Random(100);

Let’s work through the Guided activity below to see how these functions work in practice.

Guided Activity 4.1

Write down code that will do the following. Assign the result to a result variable of the appropriate data type.

4.1.1 Calculate the square root of 100.

4.1.2 Select a random number between 0 and 10 (excluding 10).

4.1.3 Round the number 13.45.

4.1.4 Calculate the square of 7.1.

4.1.5 Select a random real number between 0 and 1.

4.1.6 Round the number 1578.99.

4.1.7 Round the number 42.78 down to the nearest integer.

4.1.8 Select a random number between 1 and 6 (including 6).

Activity 4.8

4.8.1 Open the Hypotenuse_p project from the 04 – Hypotenuse
folder. For a right-angled triangle two sides of the triangle
are input via the keyboard. Write code for the [Calculate
Hypotenuse] button to calculate and display the hypotenuse
of the triangle.

4.8.2 Open the PointsCalculation_p project from the 04 – Points
Calculation folder provided. Tommy’s bank allows him to
earn points each month depending on the amount of money
he spends. For every R500 he spends he get 5 points.
Write code for the [Calculate] button to read the amount of
money he spent in a particular month and calculate the
points that he has earned for that month. Display the amount
spent and the points earned.

IT-Practical-LB-Gr10 INK06.indb 75 2019/09/26 09:55

76 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 4.8 continued

4.8.3 In a board game, two players throw a dice. The player that gets
the highest number starts the game. For example, if Player 1
throws 3 and Player 2 throws 5, Player 2 will start.

Create a Delphi project Boardgame_p that will simulate the
throw of the dice. Use the RANDOM function to determine
each player’s number.
Note: The program receives no input from the user.

Hint: A dice throw can only result in numbers 1 – 6.

4.8.4 A sphere is a perfectly round geometrical object in three-
dimensional space. The formulae to calculate the surface area
and volume of a sphere with radius, r, is:

Surface area = 4πr 2

 Volume = 4__
3

 πr 3

a. Open the pSphereSurfaceAreaVolume_p project from the 04 – SphereSurfaceAreaAndVolume folder provided.

b. Write code for a [Calculate] button that will read the radius of the sphere, then calculate and display the
surface area and volume.

Activity 4.9

Open the PerfectSq_p project in the 04 – Act 4.9 Error folder provided.

This program should enable the user to determine
whether a random number is a perfect square.

The program should do the following:

● Get a random number between 1 and 500.
● Determine the square root of this number.
● Determine the value of the square root if the decimal is removed.
● Determine the value of the square root if the square root is rounded.

Take note

If the square root, the trunc value and the round value are all the same; and if the square of the trunc value
is equal to the square of the round value, then the user must press the [Yes] button. Otherwise the user
must press the [No] button.

● Square the value of the square root after the decimal has been removed.
● Square the value of the square root after the square root value has been rounded off.

The program in your folder does not execute, nor does it give correct values.

a. Correct the errors in the program.

b. Test your corrected program by running it and checking whether the values are correct according to the
description of what the program should do.

c. If there are still errors, use any method that you have learnt in this chapter to � nd and � x the errors.

Take note

A perfect square is a number that
produces an integer value for its square
root. This means that the square root
does not have a decimal value.

IT-Practical-LB-Gr10 INK06.indb 76 2019/09/26 09:55

77TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.3 Mathematical functions

Activity 4.10

4.10.1 Open the intermediateCalculator_p project from the 04 – Intermediate
Calculator folder provided. The program receives two numbers as input and
displays the result of the operation, depending on the button (+, -, *, /, sqrt, sqr)
clicked

a. Create event handler for the buttons to calculate the result of the operation.

b. Save and run the project.

4.10.2 Write down functions that will do the following and store the answers in an
appropriate variable.

a. Round the real number 37.42.

b. Find the square root of 169.

c. Select a random number between 0 and 1000 (including 1000).

d. Round the product of 3.7 multiplied by 4.2.

e. Find the square root of a random number between 0 and 25.

IT-Practical-LB-Gr10 INK06.indb 77 2019/09/26 09:55

78 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In Chapter 3, we learnt that a variable has a:
● name
● type
● value
● location.

In this unit you will learn about another property of a variable – its scope.

A variable must � rst be declared before it can be used in a program. However,
where it is declared in a program, determines its scope. Variables declared in an
event handler are only created in the computer’s memory at the start of the event,
and only exist as long as the event is being executed. These variables cease to
exist once the event has terminated. We call these variables local variables,
because they cannot be accessed from another event – that is, they have a
local scope.

If a variable needs to be accessed from more than one event handler, it must be
declared outside of the event handlers in the VAR section at the top of the
program. We say that these variables have global scope. For example, the
variable iCount in the code snippet below is declared globally. This means it can
be accessed and changed from any event handler in the program.

….
type
 TForm1 = class(TForm)
 btnShow : TButton;
 lblMessage : TLabel;
 edtName : TEdit;
 lblShoutOut : TLabel;
 lblOut : TLabel;
 procedure btnShowClick(Sender : TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1 : TForm1;
 iCount :Integer; //globsl variable
implementation
…

Variable scope4.4

UNIT

IT-Practical-LB-Gr10 INK06.indb 78 2019/09/26 09:55

79TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.4 Variable scope

Guided Activity 4.2 Determining the area and circumference of a circle

4.2.1 Open the Circle_p project located in the 04 – Circle folder provided.

4.2.2 The design screen will display:

Radius is declared as a local variable.

4.2.3 The algorithm for calculating area and circumference of a circle using local
variables reads as follows:

● OnClick Event for the [Calculate Area] button
 The radius will be declared and read locally and used to calculate the area.

 Area := Pi * radius * radius

 Area will be a local variable

 Display the area in lblArea

● OnClick Event for the [Calculate Circumference] button
 The radius will be declared and read locally and used to calculate the area.

 Circumference := 2 *Pi * radius

 Circumference will be a local variable

 Display the area In lblCircumference

4.2.4 Write the code using the algorithm in number 3 above:

Radius as a global variable

4.2.5 You may notice that the radius was read twice, once in the Calculate Area event
handler and once in the Calculate Circumference event handler.

4.2.6 Remove the local declaration of radius from the Calculate circumference event
handler. You will get an error even though radius is declared in the Calculate Area
event handler. The scope of the radius declared in the Calculate Area event handler
is only between the BEGIN and END of this event handler.

4.2.7 Since both events need to use the value of the radius, radius must be declared
globally. So, remove the local declaration of radius from the Calculate Area event
handler. You will get another syntax error.

4.2.8 Once you declare the radius variable globally, both syntax errors will disappear.

4.2.9 Finally, in the [Read Radius] button, read the radius from the edtRadius component
and assign it to the global variable, radius.

Remember!

A variable has a:
● name
● type
● value
● location
● scope

IT-Practical-LB-Gr10 INK06.indb 79 2019/09/26 09:55

80 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 4.11

4.11.1 Open the RunningTotal_p project from the 04 – Running Total folder provided. Write code for the [Find Sum]
button that will read integer values entered in the edit box and determine a running total of the numbers
entered, i.e. every time and integer value is entered, and the [Find Sum] button is clicked, the total is updated to
include the number entered and the updated total is displayed. Note, that the answer will be displayed in label
lblRunningTotal.

4.11.2 Open the MathsOperations_p project from the 04 – Mathematical Operations folder provided. The program
reads two integer numbers (once only) and determines and displays the sum, difference, product, real quotient,
integer quotient and modulus of the two numbers. Do the following:

a. Create an OnCreate event to clear the Memo box.

b. Write code for the [Read Data] button to read the two integer numbers from the edit boxes.

c. Write code for the [Addition +], [Subtraction –], [Multiplication *], [Real Division /], [Integer Division-
DIV] and [Modulus – MOD] button to perform the operations for the two numbers that were read in the
bullet above.

d. Display the answers of the mathematical operations in the Memo box.

4.11.3 An IT computer club was formed at ABC High School. Three learners have been selected to serve either as
president, treasurer and secretary. The position each learner will be allocated will depend on the votes they
receive from fellow club members.

a. Open the � le ITClubVoting_p project from the 04 – IT Club Voting folder provided.

b. Correct the program so that it completes the following tasks:

● Each learner’s total votes received will be
displayed in the labels found below their names.
Each learner will start with a total vote of zero
when the program is initially executed.

● Club members vote by clicking on the button of
the learner of their choice. Once a learner is
selected, the total for that learner must increase
by 1 and the increased total must be displayed.

IT-Practical-LB-Gr10 INK06.indb 80 2019/09/26 09:55

81TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.4 Consolidation

BASIC MATHEMATICAL PROBLEMS USING DELPHI

● + (Addition) iTotal := 2 + 1; // iTotal = 3
● – (Subtraction) iTotal := 5 – 3; // iTotal = 2
● * (Multiplication) iTotal := 2 * 4; // iTotal = 8
● / (Real division) rTotal := 10 / 4; // rTotal = 2.5
● div (Integer division) iResult := 10 div 3 // iResult = 3
● mod (Modulus) iRemain := 10 mod 3 // iRemain = 1

Basic operators
Symbols that tell

Delphi which
mathematical

operators
to use

Using a trace table
To determine the values
of variables throughout
the program

Using an IPO table
Input-Processing-Output
Planning by keeping the end
result in mind

BODMAS (Order of calculation operations)
1. Brackets (…)
2. Orders √

__
x 2 x 2

3. Division ÷
4. Multiplication ×

5. Addition +

6. Subtraction –

Plan your
project

FormatCurr(‘FormatString’, Number);
E.g.
FloatToStrF(123.456, ffFixed, 8,2);
→ 123.46
FloatToStrF(123.456, ffCurrency, 8,2);
→ R123.46

The FloatToStrF function
determines the way in
which the number will
be formatted

Formatting
Numbers

● Square rSquare := Sqr(4); // rSquare = 16
● Square root rRoot := Sqrt(16); // rRoot = 4
● Round iRound := Round(2.4); // iRound = 2
● Truncate iTrunc := Trunc(2.99); // iTrunc = 2
● Random iRandom := Random(100); // iRandom = any integer

// value from 0 to 99

Mathematical
Functions

Variable
Scope

● Local variable
 Variable value only available inside the procedure where it is declared

● Global variable
 Variable value available throughout the program

Consolidation

IT-Practical-LB-Gr10 INK06.indb 81 2019/09/26 09:55

82 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 4: Solving basic mathematical problems using Delphi

1. Explain the difference between the DIV and the MOD operators in Delphi.

2. Explain the difference between a local variable and a global variable.

3. What is the purpose of a trace table in programming?

4. Explain what an argument of a function is.

5. What is the purpose of the RANDOM function?

6. Open the RateLitresKm_p project from the
04 - RateOfLitresAndKilometres folder
provided. At the start of Thandi’s journey the
odometer reading was iStart kilometres, and at
the end of the journey her odometer reading
was iStop kilometres. Her petrol tank was full
at the start of the journey. At the end of her
journey she � lled rLitres of petrol so that her
tank would be full again. Input values for iStart,
iStop and rLitres.

a. Write code for the [Calculate] button that will:

● read in the odometer reading at the start and stop of the journey

● calculate the number of litres required to � ll up the tank at the end of journey.

b. Calculate and display:

● total kilometres travelled

● rate of litres per kilometre

● rate of kilometres per litre.

7. Open the ExcursionTransportation_p project located in the
04 – Excursion Transportation folder provided.

ABC school is taking learners on an excursion. They approach
a bus company for a quotation. They con� rm that they have
20-seater buses and that the cost of hiring one bus is R2500.

a. Write code for the [Quotation] button to enter the total
number of learners that will be going on the excursion.

b. Determine and print the number of buses required and
the total cost of hiring the buses.

8. Open the InstallmentCalculations_p project located in
the 04 – Installment Calculation folder provided.

Nathi wants to buy a sofa from Furniture Galore Store.
He has two options to make payment for the sofa:

● Option 1: Two payments without being charged
interest, or

● Option 2: Six monthly payments. 20% interest will
be added to the cost of the sofa before the six
monthly payments are calculated.
Write code for the [Repayments] button. The button will have to read the cost of the sofa and then to
determine and print the amount for the � rst instalment if Option 1 is chosen, and the amount for the � rst
instalment if Option 2 is chosen.

IT-Practical-LB-Gr10 INK06.indb 82 2019/09/26 09:55

83TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.4 Consolidation

Consolidation activities Chapter 4: Solving basic mathematical problems using Delphi continued

9. Open the SharingTickets_p project located in the
04 – Sharing Tickets folder provided.

Three friends Zanie, Avika and Mike must share
complimentary tickets to a concert in the following way:

● Avika will receive twice as much tickets as Zanie, and
● Mike will receive three times as much as Zanie.

Write code for the [Share] button. The button must
read in the total number of tickets to be shared, then
determine and display how many tickets each person
will receive.

10. Open the DistanceConversion_p project located in the
04 - Distance Conversion folder provided.

Distance in certain countries are measured in inches,
feet, yards and miles. These are measured as follows:

12 inches = 1 foot

3 feet = 1 yard

1760 yards = 1 mile

Write code for the [Convert] button that will read in the
distance in inches and convert the distance to foot(feet),
yards and miles.

11. Open the TileCost_p project located in the 04 – Tile Cost
folder provided.

Andile wants to tile his room � oor. He must calculate the
m2 that he requires for his room. In addition, he needs to
add 10% additional m2 to his requirements to cater for
breakages. He likes a tile that costs R150 per m2. The
tiles are sold in boxes. Each box holds tiles with a
measurement of 2.3 m2.

Write code for the [Tile Calculator] to read in the length
and breadth of Andile’s room and determine and print the following:

a. The total m2 tiles needed (inclusive of breakages).

b. The number of boxes of tiles that must be bought.

c. The total amount that will be paid for the boxes of tiles.

IT-Practical-LB-Gr10 INK06.indb 83 2019/09/26 09:55

84 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 4: Solving basic mathematical problems using Delphi continued

12. Open the Traf� cFines_p project located in the 04 – Traf� c Fines folder provided.

A traf� c accounts departments charges 10% interest on all
overdue � nes.

a. Write code for the [Calculate] button to read in the
amount of the overdue � ne, and then calculate the
interest payable and the total amount of � ne payable.

The traf� c accounts department only accepts amounts
converted to the nearest Rand, for example, if the amount
for an overdue � ne with interest is R456.67, then the
amount payable is R457.

b. Display the amount of overdue � ne, the interest on the overdue � ne, total amount of � ne due and total
amount payable to the traf� c department.

13. Open the Parabola_p project located in the
04 – Parabola folder provided.

The equation for a parabola is: y = ax2 + bx + c

The following equations are used to � nd the two values for x where the graph cuts the x-axis.

x
1
 = – b + √

b2 – 4ac _____________
2a

x
2
 = – b – √

b2 – 4ac _____________
2a

a. Write code for the [Calculate] button that will allow the user to input values for a, b and c
b. Calculate and display the values for x

1
 and x

2
.

c. Test your program using the following values: a:=2, b:=3 and c:=1

14. A supplier of cooldrink cans must determine the volume of a can before it is
� lled with liquid. All cans are � lled with liquid.

Open the CanVolume_p project located in the 04 – Can Volume folder provide.

Write code to do the following when the [Calculate Volume] button is clicked:

a. declaring a variable for the height and radius of the can.

b. calculating the volume of the liquid required (according to the
speci� cations) to � ll a can if the height and radius of the can
are provided as input from the user. The formula for the
volume of a cylinder is: V = πr 2h.

c. using a label to display the volume of the liquid in the can,
calculated to ONE decimal place.

Look at this example of input and output if the height of a can is
5.4 cm and the radius is 1.2 cm:

IT-Practical-LB-Gr10 INK06.indb 84 2019/09/26 09:55

85TERM 1 I CHAPTER 4 SOLVING BASIC MATHEMATICAL PROBLEMS USING DELPHI I UNIT 4.4 Consolidation

Consolidation activities Chapter 4: Solving basic mathematical problems using Delphi continued

15. Your school is hosting a talent contest.
You were asked to write a program to generate entry
numbers for the contestants and to determine the order of
the participation.

Open the Talent_p project located in the 04 – Contestant
Code folder provided and complete the program.

a. Write code for btnCode to create a participant number
as follows:

● Generate a random number between 10 and 200.

● Add this random number to the stage name the contestant entered in the edit box.

● Save this code in an appropriate variable.

b. Write code for the btnOrder to determine the order in which this contestant will participate by assigning a
random order to the participant.

● Assume that there are 45 contestants in
this competition.

● The order for participation starts at 1.

c. Write code for btnDisplay to display the following details
of the contestant:

● The stage name

● The contestant code

● The order of participation

16. Open the FibonacciSequence_p project located in
the 04 – Fibonacci Sequence folder provided.

In a Fibonacci sequence, the � rst two terms are
entered using the keyboard. Thereafter, every term
(starting with the third term) is generated by adding
the previous two terms. For example, if 2 and 3 are
entered, then the Fibonacci sequence is:

2 3 5 8 13 21 34 55 …

a. Write code for the [Read] button that will read the � rst two terms from the two edit boxes and store them in
two variables.

b. Write code for the [Next Term] button so that each time it is clicked, it will generate the next term in the
sequence.

Did you know

You can build a longer string in a string
variable by using + to join all the parts
of the string.

Did you know

To display the details of the contestant in the memo component use the code memOutput.lines.add(Stringvalues)

The description ‘Stringvalues’ mean the values that you would like to appear in the memo component

IT-Practical-LB-Gr10 INK06.indb 85 2019/09/26 09:55

86 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 4: Solving basic mathematical problems using Delphi continued

17. Write a program to play with numbers!

Open the Numbers_p project located in the
04 – Playing With Numbers folder provided.
Complete the code for each button as follows:

a. Add code to btnGetInteger to save two random
integer numbers to appropriate variables.

● Display the value of the � rst number in the
lblIntOut.

● Name your variables iNum1 and iNum2.

b. Study the code of the [btnGetReal] button below.
Its purpose is to save two real random numbers to
appropriate variables. These values must be between
1 and 100. Display the � rst number in lblRealOut,
showing only two decimals.

● Name your variables rNum1 and rNum2.

● There is an error in this code. Draw a trace table
to � nd and correct the error.

procedure TfrmNumbers.btnGetRealClick(Sender: TObject);
begin
Randomize;
 rNum1 := random(10) ;
 rNum2 := random;
 rNum1 := rNum1*100;
 rNum2 := rNum2*10;
 lblRealOut.caption := floattostrF(iNum1,ffFixed,4,2);
 end;

c. Multiplication:

Write code for the [Multiply] buttons to multiply the two numbers saved in the variables. Remember to use
the integer values for all the calculations on the left, and the real values to right. Display the answers in the
labels for output. The decimal values should display three values.

d. Division:

● Add code to the btnrDivide to divide rNum1 by a random number between 5 and 15. Display the number
in the label for real output. Round the number.

● Add code to btniMod to � nd the remainder of iNum1 divided by a random number between 0 and 9.
Display the answer in the label reserved for integer output.

● Add code to btniDiv to � nd the integer value of iNum2 divided by a random number between 1 and 10.

e. Square:

● Write code for btniSquare to display the squared value of the second number.

● Write code for the btnrSquare to display the squared value of the second number, displayed without any
decimals. DO NOT round the number.

f. Square Root

● Determine the square root of iNum1. Display the value as an integer value.

(Hint: The ROUND and TRUNC functions will remove the decimal values.)

● Determine the square root of rNum2. Display the value with one decimal value.

Take note

Remember these values will be accessed
from various buttons, so think carefully
about where they should be declared.

IT-Practical-LB-Gr10 INK06.indb 86 2019/09/26 09:55

87TERM 2 I CHAPTER 5 DECISION MAKING

TERM 2

CHAPTER

5DECISION MAKING

CHAPTER UNITS

Unit 5.1 Decision making algorithms

Unit 5.2 Boolean expressions and the IF-THEN statement

Unit 5.3 Boolean operators

Unit 5.4 IF-THEN-ELSE statement

Unit 5.5 Nested IF-THEN statements

Unit 5.6 CASE statements

Learning outcomes

At the end of this chapter, you should be able to:
● implement decision making in algorithms, � owcharts and code
● explain what a condition is
● use Boolean operators to create conditions
● use complex conditions in decision making.

INTRODUCTION

Every day you must make choices in your life. Think about this morning:
● When your alarm went off, did you choose to wake up or did you snooze

the alarm?
● What did you do after you got out of bed?
● Did you brush your teeth � rst or start by getting dressed?
● When getting dressed, did you choose to wear warm or cool clothes?

Just imagine … This is only the start of your day, and you may have had to make
so many decisions already! People make hundreds of decisions every day. These
can range from small, inconsequential decisions (such as what to wear), to large,
life changing decisions (such as deciding what to study after school).
But how does this relate to computers?

IT-Practical-LB-Gr10 INK06.indb 87 2019/09/26 09:55

88 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

So far you have learned that a computer program is a set of instructions that
solves a problem. When solving a problem, choices have to be made. In Delphi,
we can use decision making structures in the applications that we build – that is,
you can tell your program how to make the decision that will generate the
outcome you want.

In this chapter, you will learn about the decision-making process used in Delphi.
These processes will include:
● Boolean expressions
● IF-THEN statements
● IF-THEN-ELSE statements
● Nested-IF statements
● CASE statements

You will also learn how Boolean operators can be used with these structures to
create more complex conditional statements.

IT-Practical-LB-Gr10 INK06.indb 88 2019/09/26 09:55

89TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.1 Decisions in algorithms

When you are programming, you often need to make a decision which will help
you to solve a problem. During the decision-making process, certain conditions

(or criteria) are tested.

A condition evaluates one of the two Boolean values: TRUE or FALSE. The
outcome of the condition determines which one of the two paths (the YES/TRUE
path or the NO/FALSE path) will be followed.

In an algorithm, decision statements usually start with the word ‘if’, followed by
the condition to be tested.

In a � owchart, a decision is represented by a diamond symbol. Decision making
causes branching to occur in the normal sequential program � ow.

Here are some examples showing these:

condition ?

False/No True/Yes
condition ?

False/No True/Yes

Figure 5.1: Branching along TRUE or FALSE paths

Do you remember the algorithm for making hot chocolate from Chapter 1?
Here is what the algorithm looked like:
1. Add water to a kettle and turn the kettle on.
2. Add four teaspoons of hot chocolate to a cup.
3. Add 30 ml of milk to the cup.
4. Add one teaspoon of sugar to the cup.
5. Add boiling water from the kettle to the cup.
6. Stir the hot chocolate for 10 seconds. Your hot chocolate is now ready

to drink!

With this algorithm we found a problem: not all people make their hot chocolate

in the same way. Some people only add water, other people add milk and water.

Some people drink their hot chocolate with sugar, other people drink it without

sugar.

If the goal of the algorithm is to make tasty hot chocolate, the original algorithm
might have a lower quality since the hot chocolate would only be tasty to some
people. So, to improve the algorithm, you could build a few decisions into it.
These decisions will allow the algorithm to do one thing in some circumstances,
and something else in other circumstances.

Take note

You were introduced to the
Boolean data types in
Chapter 3.

Decisions in algorithms5.1

UNIT

IT-Practical-LB-Gr10 INK06.indb 89 2019/09/26 09:55

90 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

The hot chocolate algorithm could be improved as follows:

ALGORITHM FLOW CHART

The following algorithm includes two conditional
statements:

1. Add water to a kettle and turn the kettle on.

2. Add four teaspoons of hot chocolate to a cup.

3. If the user wants milk then:
Add 30 ml of milk.

4. If the user wants sugar then:
Add one teaspoon of sugar.

5. Add 200 ml boiling water from the kettle to the cup.

6. Stir the hot chocolate for 10 seconds. Your hot
chocolate is now ready to drink!

No

Begin

Add water
to kettle

Add 200 ml of
boiling water

Stir for
10 seconds

YesWant milk?

Turn kettle on

Add 30 ml
of milk

No

Yes

Add teaspoon
of sugar

Want sugar?

Begin

End

If you have a way (such as asking the user) of measuring whether the user wants milk or sugar, the
decision statements allow you to create a hot chocolate algorithm that is more � exible.

Let’s look at a different example.

Example 5.1 Determine whether a number is odd or even

When an even number is divided by 2, it does not have a remainder.

When an odd number is divided by 2, it has a remainder of 1.

ALGORITHM FLOW CHART

1. Read Number

2. Remainder = Number mod 2

3. if remainder = 0 then

4. Display number, ‘is Even’

5. if remainder = 1 then

6. Display number, ‘is Odd’

Display
Number,
“is odd”

Start

true

true

false

false

1

2

3

5
6

4

Read Number

Remainder = Number MOD 2

Remainder = 0?

Remainder = 1?

Display
Number,
“is even”

End

Take note

There are two decisions in
the � owchart

● The condition of the
� rst decision is:
Is the Remainder = 0?

● The condition of the
second decision is:
Is the Remainder = 1?

● Conditions evaluate to
TRUE or FALSE.
Branching occurs
according to the
outcome of the test
(whether the result of
the test is TRUE or
FALSE).

IT-Practical-LB-Gr10 INK06.indb 90 2019/09/26 09:55

91TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.1 Decisions in algorithms

DECISION BOXES IN TRACE TABLES
When working with trace tables, each decision (condition) is represented with a question mark (?) in its
own column. Depending on the result of the test, you then need to indicate TRUE or FALSE in the decision
column.

Let’s trace through the � owchart that was used to determine whether a number is odd or even if the input
value for the number is 5:

BOX NUMBER NUMBER REMAINDER REMAINDER = 0? REMAINDER = 1? OUTPUT

1 5

2 1

3 False

5 True

6 5 is Odd

Stop

Activity 5.1

5.1.1 Use the skills that you have learned so far, then develop algorithms and � ow charts for the following problem
situations:

a. A person must decide whether or not to take an umbrella when going to the shop.

b. Read a person’s gender in the format ‘Male’ or ‘Female’. If the person is a female display ‘F’; otherwise
display ‘M’.

5.1.2 Draw a trace table for the Even and Odd number � owchart using an input value of 6.

5.1.3 Draw a � ow chart that receives a subject name and a mark out of 100 for the subject and then displays a
message ‘Pass’ if the mark is 50 or more.

IT-Practical-LB-Gr10 INK06.indb 91 2019/09/26 09:55

92 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

BOOLEAN EXPRESSIONS

A Boolean expression is an expression that evaluates to TRUE or FALSE. There are three categories of
Boolean expressions. These are:
● Boolean variable
● Simple Boolean expressions
● Compound (complex) Boolean expressions – this will be discussed in Unit 5.3.

BOOLEAN VARIABLES
You can assign a Boolean value to a Boolean variable. For example:
● bFound := True;
● bValid := False;

SIMPLE BOOLEAN EXPRESSIONS
Boolean expressions are created by comparing variables/values of the same data types using comparison
operators. This means that numeric data can only be compared with other numeric data (INTEGER and
REAL); and text data can only be compared with other text data (CHAR and STRING).

The table below shows the comparison operators (relational operators) that you can use to create simple
Boolean expressions:

Table 5.1: Comparison operators and their meaning

COMPARISON OPERATORS MEANING

= Equals

<> Not equals to

< Smaller than

<= Smaller or equal to

> Greater than

>= Greater of equal to

Let’s look at some examples:

Example 5.2 Example 5.3

The computer needs to check if your name is “Sipho”. The computer needs to check if the mark is more than 30

Name = “Sipho”:

Variable Value

Comparison Operator

Mark > 30

Variable Value

Comparison Operator

Boolean expressions and the If-then statement5.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 92 2019/09/26 09:55

93TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.2 Boolean expressions and the If-then statement

Example 5.4

Var
 iA, iB : Integer
 sWord1 : string;
 cWord2 : char;
begin
 iA := 7;
 iB := 7;
 sWord1 := 'Seven';
 cWord2 := '7';
end;

EXPRESSION IS THE EXPRESSION
VALID?

RESULT REASON

iA = iB Yes True Both A and B have the value 7

iB > 5 Yes True The value of B is 7 which is greater than 5

iA – iB = 5 Yes False A – B equals 0 not 5

iA = sWord1 No Error A numeric value cannot be compared with a text value.
This will give the error message “incompatible data types”.

sWord1 = cWord2 Yes False ‘Seven’ is not equal to ‘7’ as a string of characters

Activity 5.2

Study the following code snippet and answer the questions that follow:

Var
 iA : 7;
 iB : 7;
 sWord1 : 'Seven';
 cWord2 : '7';
begin
 iA := 2;
 iB := 2;
 sWord1 := 'Joly';
 cWord2 := 'A';
end;

5.2.1 Determine whether the following statements will return TRUE or FALSE.
Give a reason for you answer.

5.2.2 Copy and complete the table below.

EXAMPLE RESULT MOTIVATION

iA > 2

iA = iB

iA >= 2

iA + iB = 0

iA div 2 = iA mod 2

sWord1 <> cWord2

sWord1 > cWord2

cWord2 = 'A'

IT-Practical-LB-Gr10 INK06.indb 93 2019/09/26 09:55

94 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

THE IF-THEN STATEMENT

IF and THEN are keywords in Delphi. To make a decision in your
programming, you can use an IF-THEN statement in your code.
The IF-THEN statement executes the statement/s following the
THEN-keyword if the condition is TRUE and skips the execution of
these statement/s when the condition is FALSE.

In the � ow chart below, block A represents statement following the THEN-keyword. Pay careful attention
to how block A is skipped if the condition is false.

condition ?

Block A

Block B

Both paths execute block B

Skip block A

Execute block A

true

false

SYNTAX OF IF-THEN STATEMENT
Below is an example of the Delphi syntax of an IF-THEN statement, if one statement follows the THEN-
keyword:

If <condition> then
 <statement1>;

Note that the THEN-keyword it not followed by a semicolon because it is not the end of the statement.
However, the <statement1> is followed by a semicolon, and ends the IF-THEN statement.

To help you to understand how to implement the IF-THEN statement using Delphi code, work through the
following algorithm that determines if one number is a factor of another number.

Example 5.5 Determine points

A customer is awarded points on a store card. The store decides to award 1000 bonus points to all its customers.
Those customers who have points greater than 2500 before the bonus points are added, will be awarded an
additional 500 points.

Create a � owchart that you can use to read a customer’s current points on the store card, calculate the � nal points
after the bonus points have been allocated, then displays the customer’s � nal points.

Take note

Remember that you cannot use IF
and THEN as variable names. If you
do, you will get an error
‘Declaration expected but IF found’.

IT-Practical-LB-Gr10 INK06.indb 94 2019/09/26 09:55

95TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.2 Boolean expressions and the If-then statement

Example 5.5 Determine points continued

Read points

If points > 2500 then

 points = points + 500;

points = points + 1000;

Display points

End

display points

Start

False

1

True2

4

3

5

Read points

points = points + 1000

points = points + 500

Points > 2500

If points equal 1200, trace through the owchart using the trace table below:

BOX NUMBER POINTS POINTS > 2500? OUTPUT

1 1200

2 False

4 2200

5 2200

Stop

If points equal 3000, trace through the � owchart using the trace table below:

BOX NUMBER POINTS POINTS > 2500? OUTPUT

1 3000

2 True

3 3500

4 4500

5 4500

Stop

Now let’s code the algorithm into Delphi.

1. Open the AwardBonusPoints_p project located in the 05 – Bonus Points folder.

IT-Practical-LB-Gr10 INK06.indb 95 2019/09/26 09:55

96 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 5.5 Determine points continued

2. Create an OnClick event on [Award Bonus points] button to determine the � nal bonus points.

procedure TForm1.btnAwardPointsClick(Sender: TObject);
var
 iPoints : Integer;
begin
 iPoints := StrToInt(edtCurrentPoints.Text);
 if iPoints > 2500 then
 iPoints := iPoints + 500; //end of IF statement
 iPoints := iPoints + 1000;
 lblFinalPoints.Caption := IntToStr(iPoints);
end;

Activity 5.3

Study the � owchart below and then answer the questions that follow:

End

display points

Start

False

True

1

2

4

3

5

Read points

points = points + 1000

points = points + 500

Points > 2500

5.3.1 If Box 4 is moved immediately below Box 1, will the algorithm work? Explain.

5.3.2 What will happen if Box 3 and Box 4 are interchanged?

5.3.3 Use trace tables to verify your answer to questions 1 and 2 above.

5.3.4 Amend the � owchart to display the original points, as well as the � nal points.

Activity 5.4

Write down Delphi conditional statements to do the following:

5.4.1 Set variable sName to ‘John’ if the value in variable sSurname equals to ‘Karabo’.

5.4.2 Set variable sEvenOrOdd to ‘Even’ if the value in variable iRemainder equals 0.

5.4.3 Double the value in variable iValue if the value in variable iInput does not equal to 10.

5.4.4 Set variable sGender to ‘Female’ if the Boolean value in variable bGender is True.

5.4.5 Increase the value of variable iTotal by 10 if the value of variable iTotal is greater than or equal to 100.

IT-Practical-LB-Gr10 INK06.indb 96 2019/09/26 09:55

97TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.2 Boolean expressions and the If-then statement

Sometimes, if a condition is true, we need to execute more than one statement. Multiple statements are
grouped together within the keywords Begin and End as shown below. It is seen as one group of
statements to be executed in the THEN part.

Here is the syntax of an IF-THEN statement if more than one statement follows the THEN-keyword:

If <condition> then
begin
 <statement1>;
 <statement2>;
…
end;

Remember that the THEN and BEGIN keywords are not followed by a semicolon. However, the END
statement marking the end of the IF-THEN statement is followed by a semicolon.

Example 5.6

If Gender = 'F' then
begin
 iNumGirls := iNumGirls + 1;
 lblNumGirls.caption := IntToStr(iNumGirls);
end;

Activity 5.5

5.5.1 ABC stores have a promotion where a customer can win stars based on their
spending. A customer will win one star for every R150 spent. If the customer
spends more than R4000, they receive four extra stars. Customers cannot win
part stars.
Open the Reward_p project located in the 05 – Stars Promo folder and
complete the program by adding code to btnCalculate to determine how many
stars a client must receive.
Test yourself: If a client enters 4150 your answer must be 31.

5.5.2 In this guessing game, a player guesses a number between 50 and 100.
The computer then displays a winning number. If the number is correct, a message with the words, ‘Great
Stuff’ is displayed to congratulate the player AND 10 marks is added to the score.
If the number is 5 less than the winning number, 1 mark is added to the player’s score and a message with
the words, ‘Keep going’ is displayed.
A player may try as many times as they please.

Watch out!

As a client cannot win
part stars there must
not be any decimal
numbers. Refer to
Chapter 4 to look at the
difference between
TRUNC and ROUND!

IT-Practical-LB-Gr10 INK06.indb 97 2019/09/26 09:55

98 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 5.5 continued

a. Open the Guess_p project located in the 05 – Guess a Number folder.

b. Complete the code for btnGuess as follows:
The winning number is generated randomly between 50 and 100. If the number guessed by the player is
equal to the winning number, 10 is added to the score and a message is displayed in lblMessage.
If the number is 5 less than the winning number, 1 is added to the score and a message is displayed
in lblMessage.

c. Complete the code for btnGetScore by displaying the score in lblScore.

d. Run your program.
Hint: Use the variables provided.

THE RADIOBUTTON COMPONENT
A RadioButton component or option button that allows a user to choose only
ONE button from a group of multiple buttons. To place a RadioButton on a form,
you need to select the TRadioButton component from the Standard Palette.

If you want to use radio buttons in groups of two or more – as shown in the � gure
alongside – the TRadioGroup component allows you to do this in a neat and
dynamic way. When radio buttons are placed on a TRadioGroup, only ONE radio
button can be selected at a time. If radio buttons are not placed in a TRadioGroup,
then the radio buttons can be selected independently.

Example 5.7 Creating a group of RadioButtons

1. Select the TRadioGroup from the Standard Palette and place it on the form. The TRadioGroup serves as a
container for the radio buttons.

2. Set the Name property of the TRadioGroup to rgpGender

3. Change the TRadioGroup caption to an appropriate name for the group of buttons, for example, ‘Gender’.

4. Select the TRadioGroup component on the form. In the Items property in the Object Inspector, click on the
ellipse (…).

5. In the StringList Editor, enter the names for the option buttons and click OK.

IT-Practical-LB-Gr10 INK06.indb 98 2019/09/26 09:55

99TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.2 Boolean expressions and the If-then statement

Example 5.7 Creating a group of RadioButtons continued

6. Setting the ItemIndex property of the TRadioGroup:

a. If the ItemIndex is set to -1, then none of the radio buttons will be

 selected at runtime.

b. If the ItemIndex is set to 0, then the � rst button is already

 selected at runtime.

c. If the ItemIndex is set to 1, then the second button is already

 selected at runtime.

Guided Activity 5.1 Creating a group of RadioButtons

5.1.1 Open the Gender_p project from the 05 – Select Gender folder.

5.1.2 Create an Onclick event for the RadioButton group rgpGender so that when the
Male option is selected, the boy image is displayed. When the female option is
selected, then the girl image is displayed.

IT-Practical-LB-Gr10 INK06.indb 99 2019/09/26 09:55

100 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 5.1 Creating a group of RadioButtons continued

5.1.3 To create the OnClick event on the rgpGender group, double click on the
rgpGender component. In the rgpGender event handler write the code (to load a
picture into the image component during run time) for each option.

Picture � le name
Add path name if � le

resides in different folder

imgGender.Picture.LoadFromFile('File name')

PropertyImage component

5.1.4 Save and run your project.

Take note

● Previously, you set the ItemIndex property manually
● Now we are going to check the value of the ItemIndex property. The value of the

ItemIndex property indicates which option is selected by the user.
● If the user selects the Male option, then ItemIndex will have the value 0 and if the

Female option is selected, then the ItemIndex has a value 1
● We can test which option is selected by comparing ItemIndex against 0 or 1.

Example: in the � rst IF-THEN statement the condition is: rgpGender.ItemIndex = 0.
This tests if the current value of ItemIndex is equal to 0.

● If the Male option is selected, then the test rgpGender.ItemIndex = 0 evaluates to
true and the Male image is loaded to the imgGender image component.

● Similarly, the female image is loaded when the Female option is selected

Activity 5.6

5.6.1 All library users pay a fee of R35.00 per month for the library services. To
encourage reading amongst learners, they are offered the following discounts.

● Pre-schoolers get a discount of 15%
● Primary school learners get a discount of 13%
● High school learners and students get a discount of 11%.

Did you know

The LoadFromFile method
allows you to load the
contents of a � le (the
image) into the image

component during run time.

IT-Practical-LB-Gr10 INK06.indb 100 2019/09/26 09:55

101TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.2 Boolean expressions and the If-then statement

Activity 5.6 continued

a. Create a project, Discount_p to calculate the fees payable as follows:

● When the RadioButton in the RadioGroup is clicked, calculate the
discount. Display the discount and amount due formatted as currency.

● Write code for a [Reset] button that will reset the RadioGroup so that no
option is selected, and clear the labels so that nothing displays in
the labels.

Use the interface shown below as a guide.

5.6.2 Open the Arithmetic_p project located in the 05 – Practise Arithmetic folder.

This program allows a user to practice their mental arithmetic. The RadioGroups
allow a user to choose the number range and operator that they would like to
practice.

Run the program and correct any errors you may encounter when the program
executes.

Take note

Use the code

<labelname>.
caption := '';
This places an empty string
in the caption of the label –
and displays nothing!

IT-Practical-LB-Gr10 INK06.indb 101 2019/09/26 09:55

102 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

To create compound Boolean expressions, you can use logical operators. These are:
● AND Logical Operator
● OR Logical Operator
● NOT Logical Operator

AND LOGICAL OPERATOR
The AND operator is used to test two conditions using the format:
 (condition1) AND (condition2)

Both conditions must evaluate to TRUE for the result to be true. If either condition1 or condition2 is
FALSE, then the result will be false.

Example 5.8

If A = 5 and B = 7 then:

BOOLEAN EXPRESSION CONDITION1 CONDITION2 RESULT

(A > 2) AND (B <= 7) True True True

(A > 2) AND (B > 7) True False False

(A = 3) AND (B > 5) False True False

(A = 3) AND (B > 7) False False False

OR LOGICAL OPERATOR
The OR operator is used to test two conditions in the format:
 (condition1) OR (condition2)

Both conditions must evaluate to FALSE for the result to be false. If either condition1 or condition2 is
TRUE, then the result will be true.

Example 5.9

If A = 5 and B = 7 then:

BOOLEAN EXPRESSION CONDITION1 CONDITION2 RESULT

(A > 2) OR (B <= 7) True True True

(A > 2) OR (B > 7) True False True

(A = 3) OR (B > 5) False True True

(A = 3) OR (B > 7) False False False

Boolean operators5.3

UNIT

IT-Practical-LB-Gr10 INK06.indb 102 2019/09/26 09:55

103TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.3 Boolean operators

NOT LOGICAL OPERATOR
The NOT operator negates the result of the condition in the format:
 NOT(condition)

If the condition evaluates to TRUE, then the NOT(condition) evaluates to false. If the condition evaluates
to FALSE, then the NOT(condition) evaluates to true.

Example 5.10

If A = 5 and B = 7 then:

BOOLEAN EXPRESSION CONDITION RESULT

NOT(A > 2) True False

NOT (B > 7) False True

THE ORDER OF PRECEDENCE
In Chapter 4 you learned about the order of precedence of mathematical operators. Similarly, Boolean
operators also have order of precedence. The order of precedence from highest to lowest precedence is
as follows:

OPERATOR/S LEVEL

NOT 1 (highest level of precedence)

*, /, DIV, MOD, AND 2

+, -, OR 3

=, <>, <, >, <=, >= 4

Example 5.11 The order of precedence

Assume the value of the variables is as follows:

Gender = ‘F’, Age = 15 and Sport is ‘Netball’.

Evaluate the following Boolean expressions:

(Gender = ‘F’) OR (Age > 10) AND (Sport = ‘Cricket’)

= TRUE OR TRUE AND FALSE

= TRUE OR FALSE

= TRUE

Activity 5.7

5.7.1 Suppose the values of the variables are as follows:

A = 1; B = 2; C = 5.5; D = 8.1; Letter = ‘S’; Test = True;

Evaluate the result of each of the following statements:

a. (B > 0) AND (B <5) b. (C < D) OR (Letter = ‘s’)

c. (B mod 2 = 0) AND NOT (Test) d. Test AND (Letter = ‘S’)

IT-Practical-LB-Gr10 INK06.indb 103 2019/09/26 09:55

104 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 5.7 continued

5.7.2 Study the code snippet below and then answer the question below. For each of the Boolean expressions (a to
e), indicate whether the expression is valid or invalid. If the expression is valid, indicate the result. If the
expression is invalid, correct the expression.

VAR
 rValReal : REAL;
 iValInt : INTEGER
 cCharacter : Char;
 sString : String;
 bTest : Boolean;

a. (rValReal = 0) OR (iValInt < 100)

b. (rValReal > 0 AND < 100)

c. NOT(bTest)

d. sString = 50.1

e. Test OR NOT (cCharacter = J)

5.7.3 Write down the output of the following Boolean combinations.

a. True AND True b. True OR False

c. False OR NOT False d. True OR False OR False

e. (True OR False) AND True f. NOT (False OR True) AND True

g. (5 > 4) AND (‘3’ = 3) h. (Sqrt(16) = 4) OR (15 < 10 + 5)

i. NOT (‘Hello’ = ‘hello’) AND (4 >= Round(3.5))

Guided Activity 5.2 Generate three random numbers and determine the largest of three numbers

5.2.1 Open the project Largest_p located in the 05 – Largest Number folder.

5.2.2 Create an OnClick event for the [Show Largest number] button.

● Generate three random numbers iNum1, iNum2 and iNum3 in the range
34 to 86.

● Display the iNum1, iNum2 and iNum3 in lblNum1, lblNum2 and lblNum3
respectively

● Determine the largest of the three numbers and display the largest
number in lblLargest.

procedure TForm1.btnShowLargestClick(Sender: TObject);
var
 iNum1, iNum2, iNum3 : Integer;
begin
 Randomize;
 iNum1 := random(86 – 34 + 1) + 34;
 iNum2 := random(86 – 34 + 1) + 34;
 iNum3 := random(86 – 34 + 1) + 34;
 lblNum1.Caption := IntToStr(iNum1);
 lblNum2.Caption := IntToStr(iNum2);
 lblNum3.Caption := IntToStr(iNum3);
 if (iNum1 >= iNum2) AND (iNum1 >= iNum3)then
 lblLargest.Caption := IntToStr(iNum1);
 if (iNum2 >= iNum1) AND (iNum2 >= iNum3)then
 lblLargest.Caption := IntToStr(iNum2);
 if (iNum3 >= iNum1) AND (iNum3 >= iNum2)then
 lblLargest.Caption := IntToStr(iNum3);
end;

5.2.3 Save and run your program.

IT-Practical-LB-Gr10 INK06.indb 104 2019/09/26 09:55

105TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.3 Boolean operators

Activity 5.8

5.8.1 Run the program BooleanPractise_p.exe located in the 05 – IT Awards folder.

This app allows learners to enter their marks for IT Practical and Theory exams. The program then displays
the IT award based on the marks entered. Run the program and test it with various combinations of marks.
Copy and complete the table below. Fill in the output and the Boolean expressions that led to the results
you observe.

SPECIAL AWARD OUTPUT BOOLEAN EXPRESSION

Gold medal

Silver medal

Bronze medal

Other

5.8.2 Write a program, DiceGuess_p where the computer rolls two die without showing the results, then allows
the user to guess the value of the two die. Inform the user if:

● neither guess was correct
● one guess was correct
● both guesses were correct.

5.8.3 You must develop an application, BMICalculator_p that can be used to calculate a user’s Body Mass Index
(BMI). The formula for BMI is the person’s weight (or mass) in kilogram, divided by the square of their height
(in metres).

BMI = mass (kg)________
height 2 (m)

● Based on the BMI, the application should state whether the user is underweight (BMI under 18), at
optimal weight (BMI between 18 and 25), or overweight (BMI over 25).

● Develop an algorithm for the application and draw a � owchart to represent the algorithm.
● Write and run the application.

DECISION MAKING

CHECK BOXES
Check boxes are used to give a user a YES/NO choice, for example, whether a
person is an athlete or not.

To create a single check box:
● select TCheckBox component from Standard Palette and place the component on the form
● change the Caption property to indicate the purpose of the checkbox
● change the Name property to a meaningful name starting with the pre� x cbx, for example,

cbxSoccer
● if you want the checkbox to be ticked as default, set the Checked property to true.

Unlike RadioButtons, you can select as many check boxes as you want. In the
example alongside, a person can select all the sporting codes that he or she
participates in.

The TGroupBox component allows you to place check boxes in a neat way. If you
need to move the check boxes to another location on the form, you simply need
to move the TGroupBox.

IT-Practical-LB-Gr10 INK06.indb 105 2019/09/26 09:55

106 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

To create a group of checkboxes as shown on the previous page:
● Select the TGroupBox from the Standard Palette and place on the form. Set the Caption property of

the TGroupBox to prompt the user to make a selection from the checkboxes
● Select TCheckBox component from Standard Palette and add to the TGroupBox component.

Change the Caption property of the checkbox to indicate it purpose. Add as many checkboxes as
you need.

Guided Activity 5.3

5.3.1 Open the SportPoint_p project located in the 05 – Sport Points folder.

5.3.2 Modify the form to display as shown:

● Add a TGroupBox component from the Standard Palette
● Set the Caption property of the TGroupBox as ‘Select the sport you play’
● Add four checkboxes on the TGroupBox
● Change the Name property and Caption of the checkboxes as follows:

NAME CAPTION

chbCricket Cricket

chbHockey Hockey

chbRugby Rugby

chbSoccer Soccer

5.3.3 Create an OnClick event for [Calculate Points] button to calculate points as follows:

● if the learner plays cricket, he or she earns 10 points
● if the learner is in Grade 10 and plays rugby or soccer, he or she earns 50 points.

IT-Practical-LB-Gr10 INK06.indb 106 2019/09/26 09:55

107TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.3 Boolean operators

Guided Activity 5.3 continued

5.3.4 The code for the event handler Calculate Points is:

procedure TForm1.btnCalculatePointsClick(Sender: TObject);
var
 sName : String;
 iPoints : Integer;
Begin
 iPoints := 0;
 //get inputs
 sName := edtName.Text;

 if chbCricket.Checked then
 iPoints := iPoints + 10;

 if (rgpGrade.ItemIndex = 0) and (chbRugby.Checked or chbSoccer.Checked) then
 iPoints := iPoints + 50;
 //insert your code to questions ... here

 lblPoints.Caption := sName + ' you have ' + IntToStr(iPoints) + ' points.';
end;

● use the Checked property of the checkbox to determine whether the chbCricket is checked(selected) or
not: chbCricket.Checked

● chbCricket.Checked returns a value true if the checkbox is selected, otherwise it returns false
● the statement to award points if the learner plays cricket:

 if chbCricket.Checked then // This is the same as if chbCricket.Checked = true then
iPoints := iPoints + 10;

● the statement to award points for the learner who is in Grade 10 and plays rugby or soccer is:
 if (rgpGrade.ItemIndex = 0) and (chbRugby.Checked or chbSoccer.Checked) then

iPoints := iPoints + 50;

5.3.5 Save and run your program.

IT-Practical-LB-Gr10 INK06.indb 107 2019/09/26 09:55

108 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 5.9

5.9.1 Open the SportPoint_p project used on the previous page and add code to the
Calculate Points event handler to calculate points using the following criteria:

● if a learner plays any sport he or she earns 10 points.
● if a learner is in Grade 11 or Grade 12 and plays hockey, he or she earns

5 points.
5.9.2 Save and run the project.

IF STATEMENT AND THE SHOW MESSAGE DIALOG BOX
Until now you have mostly used the Label component to display information.
You can also use the ShowMessage Dialog Box to display information.

The syntax of a ShowMessage statement is as follows:
 ShowMessage(sMessage);

It is important to note the following:
● the ShowMessage statement is a stand-alone statement
● It displays sMessage, which is of string data type
● Upon execution of the ShowMessage statement, a ShowMessage Dialog

Box (a popup window) appears and displays the string sMessage.
● If you want to display strings with multiple lines, then you need to use the

#13 escape character to move the cursor to the next line.

Example 5.12

ShowMessage (‘Hello, World!’);

This statement will result in a ShowMessage Dialog Box displaying the text ‘Hello, World!’

Example 5.13

ShowMessage(‘John’+#13+’Lennon’);

This statement will result in a ShowMessage Dialog Box displaying the text ‘John
Lennon’ on two separate lines.

IT-Practical-LB-Gr10 INK06.indb 108 2019/09/26 09:55

109TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.3 Boolean operators

Note that in both examples the title of the ShowMessage Dialog box refers to the
project name.

Guided Activity 5.4

In the I Can Guess Game, a random number is generated. The user must guess what the
number is.

Display the following messages in ShowMessage Dialog boxes based on the user’s guess:

● ‘Number Too Low’ if the guess is less than the random generated number
● ‘Number Too High’ if the guess is greater than the random generated number
● ‘ Correct’ and the random number if the guess is equal to the random generated

number

5.4.1 Open the project GuessNumber_p.dproj located in the 05 – I Can Guess folder.

5.4.2 Since the random number must be accessed from both the [Generate Random
Number] button event handler and the [Check my Number] button event handler,
the random number iNum must be declared globally:

 var iNum : integer;

5.4.3 Add OnClick events for:

● [Generate Random Number] button: A random number in the range 0 to 100
is generated. The code to generate the random number is:

 randomize;
 iNum := random(101);

● [Check my Number] button: Read the user’s guess from the edtGuess
component and store the value in iGuess. Compare the iGuess number to
the iNum value. Depending on the outcome of the comparison, show
appropriate messages in a ShowMessage Dialog box.

 iGuess := StrToInt(edtGuess.text);
 if iGuess > iNum then
 ShowMessage('Number too high');
 If iGuess < iNum then
 ShowMessage('Number too low');
 If iGuess = iNum then
 ShowMessage('Correct'+' '+IntToStr(iNum)');

IT-Practical-LB-Gr10 INK06.indb 109 2019/09/26 09:55

110 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 5.4 continued

5.4.4 Save and run the project.

Here is an example of a sample run.

Activity 5.10

5.10.1 Open the application you wrote for the Guided activity above.

5.10.2 Add code that will allow you to keep track of the number of guesses.

If the number of guesses is more than 10 then the program must terminate.

IT-Practical-LB-Gr10 INK06.indb 110 2019/09/26 09:55

111TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.4 If-then-else statement

Sometimes you may want something to happen if a condition is met, and something else to happen if the
condition is not met. Let’s look at an example:

Example 5.14

All Grade 10 learners are invited to go on an excursion. Learners who are not in Grade 10 will stay at school and
watch a movie. The condition stipulates that if a learners is in Grade 10, then the learner will go on an excursion,
else the learner will watch a movie.

false true

Activity = ‘Watch movie’ Activity = ‘Excursion’

Grade =10 ?

Display Activity

The IF-THEN-ELSE statement executes a statement/s following the THEN-keyword when the condition is true; and
executes a statement/s following the ELSE-keyword when the condition is false.

Example 5.15

In the � ow chart below, block A represents the statement/s following the THEN keyword. Block B represents the
statement/s following the ELSE keyword. Both paths execute Block C.

false

Execute Block B Execute Block A

true

Block B Block A

Condition?

Block C

If-then-else statement5.4

UNIT

IT-Practical-LB-Gr10 INK06.indb 111 2019/09/26 09:55

112 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

SYNTAX OF IF-THEN-ELSE STATEMENT
Here is the Delphi syntax of an IF-THEN-ELSE statement if one statement follows the THEN- and ELSE-
keywords:

If <condition> THEN
 <statement1>
ELSE
 <statement2>;

● the THEN and ELSE keywords are not followed by a semicolon
● the statement before the ELSE statement does not have a semi-colon
● if more than one statement appears in the THEN or ELSE part, then the statements must appear in a

BEGIN…END block. For example:

 If <condition> THEN
 begin
 <statement1>;
 …
 <statement4>;
 end
 ELSE
 begin
 <statement5>;
 <statement6>;
 …
 end;

● a single statement does not need to appear in a BEGIN…END block

Guided Activity 5.5 Read the name and mark of a learner

Create a program that will read the name and mark of a learner for different tests.

● If the mark is greater or equal to 50 then:
 calculate a target mark for the learner’s next test by increasing the mark by 5%

 set the category to ‘Olympiad candidate’

● If the mark is less than 50 then:
 calculate the target mark for the learner’s next test by increasing the mark by 10%

 set the category to ‘Aspiring candidate’.

IT-Practical-LB-Gr10 INK06.indb 112 2019/09/26 09:55

113TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.4 If-then-else statement

Guided Activity 5.6 Read the name and mark of a learner continued

5.6.1 Here is the algorithm and � owchart for this program:

Read name,mark

If mark >= 50 then

 begin

 TargetMark = trunc(mark * 105/100)

 Category = ‘Olympiad candidate’

 end

else

 begin

 TargetMark = trunc(mark * 110/100)

 Category = ‘Aspiring candidate’

 end

Display (Name,TargetMark, Category) End

Display name, TargetMark,
Category

Start

TrueFalse

1

2

34

5

Read name

Read mark

TargetMark =
trunc(mark * 110/100)

Category =
‘Aspiring candidate’

TargetMark =
trunc(mark * 105/100)

Category =
‘Olympiad candidate’

mark > 50?

5.6.2 Trace through the � owchart using the inputs John for name and 44 for the mark.

BOX NUMBER NAME MARK TARGETMARK CATEGORY MARK >= 50? OUTPUT

1 John 44

2 False

4 48 Aspiring candidate John 48 Aspiring candidate

5

Stop

5.6.3 Complete the trace table below for the � owchart using the given inputs: Mary and 57 for the mark.

BOX NUMBER NAME MARK TARGETMARK CATEGORY MARK >= 50? OUTPUT

5.6.4 We are now ready to code. Open the Olympiad_p project.

IT-Practical-LB-Gr10 INK06.indb 113 2019/09/26 09:55

114 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 5.6 Read the name and mark of a learner continued

5.6.5 Create an OnClick event for the [Status] button to determine the target mark and category and to display the
name, target mark and category of a learner. The code in the event handler for the [Status] button is:

procedure TForm1.btnStatusClick(Sender: TObject);
var
 sName : String;
 iMark : integer;
 sCategory : String;
 iTargetMark : integer;
begin
 sName := edtName.Text;
 iMark := sedMark.Value;

 if iMark > 50 then
 begin
 sCategory := 'Olympiad candidate';
 iTargetMark := trunc(iMark * 105/100);
 end
 else
 begin
 sCategory := 'Aspiring candidate';
 iTargetMark := trunc(iMark * 110/100);
 end;
 lblStatus.Caption := sName + #9 + IntToStr(iTargetMark) + #9 + sCategory;
end;

5.6.6 Save and run the project.

Activity 5.11

5.11.1 Open the incomplete TestNumbers_p project located in the 05 – Test Numbers folder and complete the
program as follows:

● BtnGenerate: Complete the code for btnGenerate to
save two random numbers between 1 and 35 in
appropriate variables.

● BtnOddEven: Write code for this button to test whether
a number is an odd or even number. Display a
message with your answer.

● BtnFactor: Test if the � rst number is a factor of the
second number. Display a message with your answer.

● BtnSmaller: Compare the two numbers and display the smaller one.
● BtnThreeNum: Write code to place three random numbers between 1 and 20 in edtANum, edtBNum and

edtCnum respectively.
● btnArrange: Write code to place the three numbers in descending order in the three edit boxes.

Take note

As with the #13 escape
character that you used to
place text on separate
lines, you can use the #9
tab character to place text
in columns.

IT-Practical-LB-Gr10 INK06.indb 114 2019/09/26 09:55

115TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.4 If-then-else statement

Activity 5.16 continued

5.11.2 ABC school assigns every student that enrols with a unique four digit number, for example, 1748.

This number is made up as follows:

● the � rst two numbers represent the year in
which the learner enrolled in any school in
Grade 8.

● the third number represents the gender of
the learner, 4 for female and 8 for males.

● The last number is a random number
between 0 and 9.

a. Create a new Delphi program with an
interface similar to the image to the right.

The user will enter his student number in the Edit box.

b. Use the StudentInformation_p project located in the 05 – Student Information folder. Write the code for
btnTest to do the following:

● use the given variables
● use div and mod functions to separate the number into the unique number, gender number and the

year enrolled
● display these values as shown in the example above
● use an IF statement to determine the gender of the student and save either ‘Male’ or ‘Female’ in a

string variable.
● the code to determine the grade is given. Read the code comments to understand what this

code does
● display all the values in a single string (as shown in the example above).

c. Test your program using the values 1748 and 1853.

5.11.3 Write an applicaton, Schoolbag_p that will calculate the approximate weight of your school bag and
categorise it according to three levels: extra load (more than 6 kg), manageable (between 3 and 6 kg,
inclusive) and lightweight (less than 3 kg). For each book in the bag:

● The user clicks on a RadioButton, in a RadioGroup, to select the book size.
● Click on [Add Book] button to record the book weight according to the size as follows:

 large books weigh 900 g on average

 medium books weigh 400 g on average

 small books weigh 150 g on average.

● Write code for BtnGo to display the following Information:
 the total number of books recorded

 the weight of the bag

 the category of the bag.

5.11.4 Open the Diving competition activity you completed in Activity 4.7 (use the Scoring_p project from the
04 - Scoring folder) and expand the program as follows:

a. Add two more Edit boxes with appropriate labels to record the scores of two more judges, so that � ve
judge’s scores are recorded.

b. Change the code for the [Final Score] button to exclude the highest and the lowest score and calculate
the average of the other three scores

IT-Practical-LB-Gr10 INK06.indb 115 2019/09/26 09:55

116 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 5.12

Create a program that generates three random numbers between 1 and 100. Display all three numbers to the user.
If the user clicks the [Largest] button, display the value of the largest random number. If the user clicks the [Smallest]
button, display the value of the smallest number.

For this application:

5.12.1 Create an algorithm for the [Smallest] button.

5.12.2 Create a � ow chart for the [Largest] button.

5.12.3 Create a trace table for the [Smallest] button if the random numbers are 39, 41 and 15.

5.12.4 Create a trace table for the [Largest] button if the random numbers are 72, 14, and 11.

5.12.5 Create the program in Delphi and run it.

IT-Practical-LB-Gr10 INK06.indb 116 2019/09/26 09:55

117TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.5 Nested if-then statements

Nested if-then statements5.5

UNIT

A nested IF-THEN statement occurs when one conditional statement is placed inside another conditional
statement. By doing this your program � rst checks if the outer condition has been met before looking at
the inner conditional statement.

DELPHI SYNTAX OF THE NESTED IF STATEMENT

The syntax for the nested IF
statement is:

The code snippet below shows an example of a nested-if
statement.

IF <condition1> THEN
 IF <condition2> THEN
 <statement1>
 ELSE
 begin
 <statement5>;
 <statement6>;
 …
 end;

Nested-IF example
if iValue > 0 then
begin
 if iValue < 100 then
 ShowMessage('Number is between 0 and 100')
 else
 ShowMessage('Number is 100 or above');
end;

Take note of the following for a nested IF statement:
● the outer conditional statement (iValue > 0) is tested � rst. If this condition is true, the inner conditional

statement (iValue < 100) is tested next
● if the conditional statement (iValue < 100) is true, then the ShowMessage(‘Number is between 0 and

100’) statement is executed, else the ShowMessage(‘Number is 100 or above’); is executed.

Work through the following example to help you understand.

Example 5.16

A company is handing out bags using the following criteria:

● if a person is a male and drinks coke then he quali� es for a bag; otherwise no bag
● if a person is female and drinks fanta then she quali� es for a bag; otherwise no bag.

Nested-if example
if Gender = 'Male' then
begin
 if Drink = 'Coke' then
 ShowMessage('You get a bag')
 else
 ShowMessage('No bag');
end;
if Gender = 'Female' then
begin
 if Drink = 'Fanta' then
 ShowMessage('You get a bag')
 else
 ShowMessage('No bag');
end;

IT-Practical-LB-Gr10 INK06.indb 117 2019/09/26 09:55

118 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 5.7

Generate three random integers Num1, Num2 and Num3 in the range 0 to 100 and display the smallest of the three
numbers. You may assume that the three numbers are different.

5.7.1 The algorithm and � owchart:

Generate three random number a, b, c
in the range 0 to 100

Display Num1, Num2 and Num3

If Num1 < Num2 then

 If Num1 < Num3 then

 small = Num1

 else

 small = Num3

Else

 If Num2 < Num3 then

 small = Num2

 else

 small = Num3

Display small

Display = iSmall

Start

False

False FalseTrue

True

1

2

4

8765

3

9

Generate Random Numbers
iNum, iNum2, iNum3

iSmall = iNum1 iSmall = iNum3 iSmall = iNum2 iSmall = iNum3

iNum1 < iNum2?

iNum1 < iNum3? iNum2 < iNum3?

End

5.7.2 Assume that the values 10, 25 and 12 were randomly generated for Num1, Num2 and Num3 respectively.
Trace through the � owchart using these values.

BOX
NUMBER

NUM1 NUM2 NUM3 SMALL NUM1 < NUM2? NUM1 < NUM3? NUM2 < NUM3? OUTPUT

1 10 25 12

2 True

4 True

5 10

9 10

Stop

5.7.3 Trace through the � owchart using the randomly 25, 12 and 32 for Num1, Num2 and Num3 respectively.

BOX
NUMBER

NUM1 NUM2 NUM3 SMALL NUM1 < NUM2? NUM1 < NUM3? NUM2 < NUM3? OUTPUT

1 25 12 32

2 False

4 True

5 12

9 12

Stop

IT-Practical-LB-Gr10 INK06.indb 118 2019/09/26 09:55

119TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.5 Nested if-then statements

Guided Activity 5.7 continued

5.7.4 Open the SmallestOfThree_p project located in the 05 – Smallest of Three folder.

a. Because Num1, Num2 and Num3 will be used by both the [Generate Numbers] button and the [Show
Smallest] buttons, they have to be declared globally.

var
 Form1: TForm1;
 iNum1, iNum2, iNum3: integer;

b. Create an OnClick event for the [Generate Numbers] button to generate the three random numbers
Num1, Num2 and Num3. Display the randomly generated numbers in lblNum1, lblNum2 and lblNum3.

Here is the event handler code for the [Generate Numbers] button.

procedure TForm1.btnGenerateNumbersClick(Sender: TObject);
begin
 Randomize;
 iNum1 := random(101);
 iNum2 := random(101);
 iNum3 := random(101);
 lblNum1.Caption := IntToStr(iNum1);
 lblNum2.Caption := IntToStr(iNum2);
 lblNum3.Caption := IntToStr(iNum3);
end;

IT-Practical-LB-Gr10 INK06.indb 119 2019/09/26 09:55

120 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 5.7 continued

c. Create an OnClick event for the [Show Smallest] button to determine the smallest number of the three
numbers and display the smallest number in the lblSmall.

procedure TForm1.btnShowSmallestClick(Sender: TObject);
var iSmall: integer;
begin
 if iNum1 < iNum2 then
 if iNum1 < iNum3 then
 iSmall := iNum1
 else
 iSmall := iNum3
 else
 if iNum2 < iNum3 then
 iSmall := iNum2
 else
 iSmall := iNum3;
 lblSmall.Caption := IntToStr(iSmall);
end;

d. Save and run the program.

Activity 5.13 More number games!

5.13.1 Create a new Delphi program that will do the following:

a. Generate a random number between 1 and 100.

b. If the number is larger than 50, determine whether the number is an odd or even number.

c. If the number is smaller than 50, determine whether the number is an odd or even number.

5.13.2 Display the number of even numbers larger than 50 and the number of odd numbers smaller than 50 in a
ShowMessage dialog box.

IT-Practical-LB-Gr10 INK06.indb 120 2019/09/26 09:55

121TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.5 Nested if-then statements

Activity 5.14

Complete the application to help a tuck shop decide how to order the drinks they sell. They want to know what the
learners prefer – cooldrink or cold water – and also whether there is a difference between what the girls and boys
prefer.

Open the Prefer_p project from the 05 – Prefer Cooldrink folder and study the interface. The application should do
the following:

● Determine whether a learner is male or female.
● Determine whether that learner prefers water or cooldrink.
● Keep track of the total number of learners that answer.
● Calculate the percentage of females who prefer water.
● Calculate the percentage of females who prefer cooldrink.
● Calculate the percentage of males who prefer water.
● Calculate the percentage of males who prefer cooldrink.
● Display the percentages in the labels provided as shown.

a. Draw a � owchart to help you complete this App.
b. Complete the code according to your � owchart and run the App.

IT-Practical-LB-Gr10 INK06.indb 121 2019/09/26 09:55

122 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Another type of decision-making structure in Delphi is the CASE statement. Instead of using a sequence
of cascading IF-THEN-ELSE-IF statements for decision making, the CASE statement provides a tidy way
of dealing with decision-making. The cascading IF-THEN-ELSE-IF statement allows you to execute
a block code amongst different alternatives. If you are checking on a value of a single variable of the
IF-THEN-ELSE-IF statement, it is better to use the CASE statement.

The CASE statement uses the following syntax:

CASE statement syntax
CASE <variable> OF
 value1 : statement1;
 value2 : statement2;
 value3 : statement3;
 ELSE
 Statement4;
end;

Take note of the following:
● start with the keyword CASE followed by a <variable> followed by the keyword OF. There is no

semicolon after the OF keyword
● the CASE statement does not have a begin but has an END
● the <variable> can be the name of the any variable of type integer or character
● different cases: Value1, Value2 and Value3 refer to the cases against which <variable> will be

compared and must be of the same data type as <variable>
● each case is followed by a colon
● the statements following the colon indicates what code must be executed for that case. Example for

case Value2, Statement2 must be executed.
● if more than one statement needs to be executed in a case, it must be in a Begin... End block
● a case can be represented by:

 an integer : 5
 a character : ‘A’
 range : 3..5

● if the same action is required for more than one case then cases can be grouped as follows:
Case cLetter Of
 ‘a’,’e’,’i’,’o’,’u’: ShowMessage (‘Vowel’); // grouped cases are separated by comma
 Else
 ShowMessage (‘Not a vowel’)
End;

● when a match is found during the comparison, control of the program passes to that case and the
code of that case is executed and the CASE statement is exited

● the ELSE statement is optional. It is used to provide a default if none of the cases match the
<variable>.

Case statements5.6

UNIT

IT-Practical-LB-Gr10 INK06.indb 122 2019/09/26 09:55

123TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.6 Case statements

Guided Activity 5.8 Cooldrink selection

A user makes a choice from a RadioButton group, and depending upon the choice he or she makes, the following is
displayed:

RADIOBUTTON MESSAGE

Coco Cola You selected Coca Cola

Creme Soda You selected Creme Soda

Fanta Grape You selected Fanta Grape

5.8.1 Open the CooldrinkSelection_p project from the 05 – Cooldrink Selector folder.

5.8.2 The code below uses nested IF-THEN-ELSE to determine the cool selected. Note that the nesting is always in
the ELSE part.

Nested IF-THEN-ELSE statement
if iSelectedItem = 0 then
 ShowMessage('You selected a Coca Cola')
else
 if iSelectedItem = 1 then
 ShowMessage('You selected a Creme Soda')
 else
 if iSelectedItem = 2 then
 ShowMessage('You selected a Fanta Grape')
 else
 ShowMessage('You have not selected a cooldrink');

5.8.3 Now we are going to write the same code using a CASE statement. Create an OnClick event for the [Select]
button. Here is the code in the event handler:

CASE statement
procedure TForm1.btnSelectClick(Sender: TObject);
var
 iSelectedIndex : integer;
begin
 iSelectedIndex := rgpCooldrinks.ItemIndex;
case iSelectedIndex of
 0 : Showmessage('You selected Coca Cola');
 1 : Showmessage('You selected Creme Soda');
 2 : Showmessage('You selected Fanta Grape');
 else
 ShowMessage('You have not selected a cooldrink');
 end;
end;

The CASE statement is a lot easier to read and use. It is also easier to expand or add additional values to.

Did you know

The CASE
statement can use

integers and
character variables,

but not string or
double variables.

IT-Practical-LB-Gr10 INK06.indb 123 2019/09/26 09:55

124 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 5.8 Cooldrink selection continued

5.8.4 Save and run the project.

The CASE statement below shows:
● Checking if a variable falls within a range of values.
● Checking if a variable has one of many individual values.
● Combining a range of values with individual values.

The code snippet below shows an example of each of these techniques.

CASE complex comparisons
CASE iNumber OF
 1..99 : ShowMessage('Number is between 1 and 100');
 iMin, iMax : ShowMessage('Number is the minimum or maximum');
 -1, 101..9999 : ShowMessage('ERROR: Number is illegal');
ELSE
 ShowMessage(‘Number does not meet any requirements);
end;

As this example shows, the CASE statement can also contain an ELSE condition, which is activated when
the variable does not match any of the values.

To try out the CASE statement, work through the following example:

Example 5.17 Percentage to symbol converter

Learners receive a percentage mark, as well as a symbol for certain educational courses in South Africa. These
symbols might be allocated as follows:

MARK SYMBOL

80% – 100% A

70% – 79% B

0% – 69% F

The following pseudo code and � ow chart were created to plan this program that converts the mark into a symbol:

IT-Practical-LB-Gr10 INK06.indb 124 2019/09/26 09:55

125TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.6 Case statements

Example 5.17 Percentage to symbol converter continued

BEGIN

SET mark ← user input

IF mark >= 80%

 SET symbol ← ‘A’

ELSE

 IF mark >= 70%

 SET symbol ← ‘B’

 ELSE

 SET symbol ← ‘F’

RETURN symbol

END

True

Begin

Set symbol = ‘F’ Set symbol = ‘B’ Set symbol = ‘A’

True

mark >= 80%

mark >= 70%

Begin

End

Read mark

Return
symbol

False

False

Use the pseudo code and � ow chart, plus the instructions below to create the program:

1. Create the following user interface.

2. Create an OnClick event for the [Convert] button.

3. Create a local integer variable called iPercentage.

4. Obtain the value of iPercentage from the text box. Remember to
convert the text in the edit box to an integer.

5. Create the following CASE statement to display the symbol.

Grade to symbol CASE statement
case iPercentage of
 0..69 : ShowMessage('F');
 70..79 : ShowMessage('B');
 80..100 : ShowMessage('A');
else
 ShowMessage('Invalid mark');
end;

This CASE statement reads the value of iPercentage and then compares it with the ranges from the CASE
statement. If it � nds a match, it uses the ShowMessage dialog box to create a pop-up box with the symbol.
If no match is found, the ELSE condition activates, which creates a message with the words, Invalid mark.

6. Save and test the application.

IT-Practical-LB-Gr10 INK06.indb 125 2019/09/26 09:55

126 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 5.15

Write a program to convert different length units according to the table shown below:

MILLIMETRES (MM) CENTIMETRES (CM) METRES (M)

1 0.1 0.001

10 1 0.01

1000 100 1

Your interface may resemble the example below:

Activity 5.16

Laurens runs a gardening service, and his rates are displayed in table below:

HOURS PER WEEK RATE PER HOUR

1 – 2 R 250

3 – 4 R 200

5 – 6 R 175

7 – 8 R 150

5.16.1 Write a nested IF-statement to determine the rate per hour given the hours worked per week.

5.16.2 Determine the rate per hour using a CASE-statement.

IT-Practical-LB-Gr10 INK06.indb 126 2019/09/26 09:55

127TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.6 Consolidation

Consolidation

DECISION MAKING

A logical statement that is
either true or false.

Expressions will consists of
relational operators that
compares options/values.

IF <condition> then
 <statement>;

IF <condition> then
 <statementA>

else

 <statementB>;

IF <conditionA> then
 <statementA>

else

 IF <conditionB> then
 <statementB>

else

 <statementC>;
CASE <condition> of

 conditionA : statementA;

 conditionB : statementB;

 conditionC : statementC;

ELSE

 ShowMessage(Condition not listed)

end;

Introducing a conditional clause.

Conditional statements assist the program in
making choices to solve the problem.

● Relational operators
 =
 <>
 <
 <=
 >
 >=

● Logical operators
 AND
 OR
 NOT

Order of precedence:
Brackets – NOT – AND – OR –
Relational operators

Boolean
Expressions

Decision
Making

Select CASE
Statement

IF-THEN
Statement

IF-THEN-ELSE
Statement

Nested IF-THEN
Statement

CASE <condition> of

 conditionA : statementA;

 conditionB : statementB;

 conditionC : statementC;

end;

IT-Practical-LB-Gr10 INK06.indb 127 2019/09/26 09:55

128 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 5: Decision making

1. The following variables are declared in the procedure.

Var
 iQuarters : Integer;
 sName : string;

Check if the following-statements are valid. If not, correct the statement .

a. (iQuarters > 0)

b. (1 <= iQuarters <= 10)

c. iQuarters = 10 AND sName = ‘Rametswe’;

d. (iQuaters = ‘10’) OR (sName = ‘1’);

2. In each of the following activities you must decide what structure is the best to use in every situation. Remember to
do thorough planning for every activity.

a. Write a program to determine grades in a course with three tests. No test may count more than 10 marks. If a
mark entered is more than 10, a message must be displayed to inform the user that the mark is more than 10,
and the user must be given an opportunity to enter the correct mark. The grades are determined on the
average (rounded) of the three tests. Grades are determined according to the following rule:
● Grade A: an average of 9 or better
● Grade B: an average between 8 and 9
● Grade C: an average between 7 and 8
● Grade D: an average between 6 and 7
● Grade E: an average between 5 and 6
● Grade F: an average below 5

Display the three tests, the average for each test and the grade obtained in a ShowMessage dialog box.

b. You want to sell newspapers to raise extra money. Each paper is sold for R5. The newpaper agency offered you
a choice of wage package. Use the information below to create an app to help you decide which wage package
you would like to accept:
● Straight wage of R300 per week
● R3.50 per hour for 40 hours plus a 10% commission
● A straight 15% commission on the papers sold per week with no other wage

The program takes your expected weekly sales as input and outputs the weekly wage under each plan. Save
and run your application.

c. Write a program to score the rock-paper-scissors game. Each of the two players type in ‘P’,’R’, or ‘S’, and
the program announces the winner, as well as the reason that choice won. The following rules apply:

● paper wins over rock because ‘paper covers rock’
● rock wins over scissors because ‘rock breaks scissors’
● scissors win over paper because ‘scissors cut paper’

Each win scores a point for its player. If both players choose the same play, no score is added to either player.

3. There are 13 cards in one suite of cards (such as hearts). They consist of 10 numbered cards, as well as the jack,
queen and king.

Create an app to simulate Blackjack by following the guidelines below:

● The application randomly selects two cards from a suite of cards.
● Load the images of the card corresponding with the random cards chosen.
● Calculate the value of the two cards that were chosen.

Remember each card’s value is its face value (the three of hearts is worth three); the king, queen and jack are
worth 10 each, and the ace is worth 11.

● Add the values of the two cards.
● If the value is 21, display the message, ‘Blackjack!’, otherwise display ‘No luck!’.

IT-Practical-LB-Gr10 INK06.indb 128 2019/09/26 09:56

129TERM 2 I CHAPTER 5 DECISION MAKING I UNIT 5.6 Consolidation

Consolidation activities Chapter 5: Decision making continued

5. Optional activity

Follow the instructions below to create a Tic Tac Toe game.

a. Create an interface as shown alongside:

Hint: Each block represents a button.

b. Create a global Boolean variable called bIsCross.

c. In the variable declaration, set the value of bIsCross to True,
as shown in the code below.

Global variable starting value
bIsCross : Boolean = True;

It is possible to assign starting values to global variables as
the code above shows. This is very useful if you need one of
your variables to have a value from the start of the application.

d. Create an OnClick event for the � rst button by double clicking the button.

e. In the OnClick event, create an IF-THEN-ELSE statement that checks if bIsCross is true.

f. If bIsCross is True, set the caption of the � rst button to ‘X’ and set the value of bIsCross to False.

g. Otherwise (using the ELSE statement), set the caption of the � rst button to ‘O’ and the value of bIsCross
to True.

The code for the � rst button is shown below to help you.

First OnClick event
if bIsCross = True then
begin
 btnOne.Caption := 'X';
 bIsCross := False;
end
else
begin
 btnOne.Caption := 'O';
 bIsCross := True;
end;

Looking at the code, you will see that the � rst condition checks the value of bIsCross. The Boolean variable
bIsCross is used to indicate if the next move should be a cross or a naught.

If the bIsCross is True, it sets the text of btnOne to “X” (a cross) and changes the value of bIsCross to False. If it
is not True, then the ELSE statement activates which sets the caption of the button to “O” and sets the value of
bIsCross back to True.

Did you know

In the conditional statement, you could simply check the value of bIsCross. Depending on
the value of bIsCross, this will either be True or False. As such, the conditional result of

“bIsCross = True” will always be the same as Boolean value bIsCross.

IT-Practical-LB-Gr10 INK06.indb 129 2019/09/26 09:56

130 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 5: Decision making continued

h. Save and test your application. If you created the code correctly, your � rst button should swap between “X”
and “O” each time you press it.

i. In the OnClick event handler, set the caption and disable the button to prevent players from pressing it
again.

j. Copy the code to create OnClick events for all the other buttons. Make sure you change the code for each
event so that it changes the caption of the correct button!

k. Save and test your application. You should now be able to play a game of Tic Tac Toe!

IT-Practical-LB-Gr10 INK06.indb 130 2019/09/26 09:56

131TERM 2 I CHAPTER 6 VALIDATING DATA I

VALIDATING DATA 6
 CHAPTER

TERM 2

CHAPTER UNITS

Unit 6.1 String comparison

Unit 6.2 Validating data

Unit 6.3 IN operator

 Learning outcomes

At the end of this chapter you should be able to:
● calculate the length of a string
● compare two strings based on their single character ASCII values
● check (validate) the information that users enter into a program before processing it
● use the IN operator

INTRODUCTION
In spy movies, there are often situations where one spy needs to meet another
spy and they need to make sure the person they are meeting is the correct
person. To solve this problem, the spies usually have a secret phrase that they
say at the start of the conversation, such as, “It always rains in February”. If the
� rst spy gives the correct greeting, and the second spy gives the correct response,
then the two spies have con� rmed their identities and can have a conversation.
In computer terms, what these spies are doing is comparing responses. If the
response spoken by one spy does not match the string stored in the second
spy’s memory, then the � rst spy must be an imposter!

Figure 6.1: Spies in movies often use string comparisons

IT-Practical-LB-Gr10 INK06.indb 131 2019/09/26 09:56

132 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Without thinking about it, you make string comparisons every day. There are
several different reasons for using string comparisons in day to day life, including:
● � nding the correct item from a list of items
● verifying that an item is correct
● making decisions based on the value of a string.

Similar comparisons can be made in Delphi using conditional statements. These
comparisons allow you to improve your application by building decisions into
your application. Examples of string comparisons in applications include:
● � nding the right person to send a text message to
● con� rming that the user knows the correct username and password.

You can use a string comparison in any situation where you need to � nd an item,
con� rm that text is correct, or create a condition based on changing values.

Figure 6.2: String comparisons can be used for usernames and passwords

In this chapter, you will learn about string comparisons. You will, more speci� cally,
learn how to determine if one string is larger or smaller than another string, how
to validate data and how to � nd a value in a list of values.

IT-Practical-LB-Gr10 INK06.indb 132 2019/09/26 09:56

133TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.1 String comparison

String comparison6.1

UNIT

In Chapter 5 you learnt about relational operators that can be used to compare integer, real, character and
string data. In this chapter you will learn how string comparisons take place. Each character has an
American Standard Code for Information Interchange (ASCII) value. The ASCII code for a character is a
numerical value. For example, ‘A’ has the ASCII value 65, ‘B’ is 66, …, ‘Z’ is 90.

The table below shows the ASCII code for capital letter ‘A’ to ‘Z’, lower case letter ‘a’ to ‘z’ and digits 0 to 9.

Table 6.1: The ASCII code for some characters

CH ARACTERS ASCII CODE

‘A’…’Z’ 65…90

‘a’…’z’ 97…122

0…9 48…57

You will � nd a full ASCII table in Annexure B at the end of this book.

ALGORITHM FOR COMPARING STRINGS
Delphi compares two strings character by character, starting with the � rst character of each string using
ASCII values as follows:
1. Read the � rst character of string1 and store it in char1
2. Read the � rst character of string2 and store it in char2
3. Compare char1 and char2

● If char1 > char2, then string1 > string2
● If char1 < char2, then string1 < string2
● If char1 = char2, then store the next character from each string in char1 and char2

4. Repeat Step 3 until you � nd out that one string is larger than another or until reach the last character
of both strings.

5. If you reach the last character without � nding that one string is larger than another, then the two
strings are equal.

Example 6.1

If you must compare two strings ‘Cat’ and ‘Cot’:

Determine if ‘Cat’ > ‘Cot’

‘CAT’ ‘COT’

CHAR1 ASCII VALUE CHAR2 ASCII VALUE

C 67 C 67

a 97 o 111

t 116 t 116

Using the algorithm above:
● Characters in position one in both strings are equal
● Characters in position two in both strings are not equal: Char1 < Char2, therefore string1 < string2.

Hence ‘Cat’ < ‘Cot’ and the condition ‘Cat’ > ‘Cot’ is false

IT-Practical-LB-Gr10 INK06.indb 133 2019/09/26 09:56

134 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided activity 6.1 String comparisons

Considering the explanation above, arrange the following strings from the smallest to the largest.

6.1.1 ‘Benjamin’

6.1.2 ‘Ben’

6.1.3 ‘Patience’

6.1.4 ‘Peter’

6.1.5 ‘m’

6.1.6 ‘999’

6.1.7 ‘1000’

VALIDATING LOGIN INFORMATION
In this section, you will use string comparisons to:
● create a smartphone application’s login screen
● create a relational string comparison application.

To do this, you will create a user interface for an application called Playmo.

Example 6.2 Smartphone login page

Use the logo provided to create your smartphone login screen. To do this.

1. Open the SmartphoneLogin_p project located in the 06 – Smartphone Login folder. You should see the
following user interface.

2. Remove the caption from lblError, so that the label is empty. This label will only show a message if the user
makes a mistake.

3. Create an OnClick event for the [Log in] button.

4. Create two local string variables called sUsername and sPassword.

5. Assign any username or password to these strings in your event. Do not use your real username and password!

6. Create two new string variables called sInputUsername and sInputPassword.

7. Set the value of these two variables equal to the text from the Username and Password textboxes.

8. Create a conditional statement that checks if the username and the password is correct.

9. If both are correct, show the user a message stating that they have been logged in successfully.

IT-Practical-LB-Gr10 INK06.indb 134 2019/09/26 09:56

135TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.1 String comparison

Example 6.2 Smartphone login page continued

10. Otherwise, update lblError so that it says, ‘Incorrect username and/or password.’ The code for this conditional
statement is shown below.

Condition text comparison
if (sInputUsername = sUsername) and (sInputPassword = sPassword) then
 ShowMessage('You have been logged in successfully!')
else
 lblError.Caption := 'Incorrect username and/or password.';

11. Save and test your application. Enter different combinations of correct and incorrect usernames to make sure
it works.

Congratulations, you just created a username and password application.

Guided activity 6.2 Relational comparisons

For this guided activity, you need to create an application that will use all six relational operators to compare existing
strings with strings you enter. You can start by opening the application stored in the 06 – Relational Comparisons folder.
It should have the following user interface.

IT-Practical-LB-Gr10 INK06.indb 135 2019/09/26 09:56

136 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided activity 6.2 Relational comparisons continued

 The application should already have an OnClick event for the [Check] button with the following code.

OnClick event
if edtEqual.Text = lblEqualInput.Caption then
 lblEqual.Caption := 'True'
else
 lblEqual.Caption := 'False';

This conditional statement checks if the text entered into the � rst text box is equal to the text in the lblEqualInput caption
(that is, ‘Hello, World!’). If it is, it updates the lblEqual caption to say TRUE. If not, the lblEqual caption says FALSE.

Using a similar structure to this code:

6.2.1 Create similar conditional statements for the remaining relational operators.

6.2.2 Write down a value for each line that will result in the text TRUE being shown.

6.2.3 Write down a value for each line that will result in the text FALSE being shown.

6.2.4 Write down the text that is shown for each line if you leave the textboxes empty.

For question 2 and 3, you can use the application to test your own answers. The images below show two possible
answers.

Activity 6.1

Make the following changes to the Playmo login screen:

6.1.1 Create an OnClick event for the Forgot password label that displays a password clue.

6.1.2 If the label is pressed a third time, display the whole password.

IT-Practical-LB-Gr10 INK06.indb 136 2019/09/26 09:56

137TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.2 Validating data

Data validation is a technique used by programmers to check (or validate) the information that users
enter before processing it. This allows programmers to prevent common errors from occurring by making
sure that the information entered is correct before it is used. The goal of input validation is therefore to
prevent users from accidentally or purposefully entering incorrect data into your program.

If your program automatically generates the data it will use, you can test the data before using it. You can
also improve the algorithm generating the data to ensure that only the correct types of data are generated
for your program.

In contrast, when a user is asked to supply data for your program, many unpredictable things can happen.
The user may have:
● misunderstood what data is expected
● clicked the next button without entering data
● entered the correct data in an incorrect format
● entered the correct type of data, but an incorrect value.

This incorrect data can cause your application to crash, or even worse, provide incorrect output.

DIFFERENT TYPE OF INPUT VALIDATION
You can use different types of input validation in your program, including:
● Required input validation prevents the processing until certain required inputs are given. When you

must read a value and perform a calculation from an Edit component, you may want to test whether
the Edit component has a value before proceeding with calculations. For example:

 ….
if edtAmount.text = '' then
 ShowMessage('Enter a value')
 Else
 rAmount := StrToFloat(edtAmount.text);
 ….

● Type validation ensures that the data entered is the correct data type. In, for example, a calculator
application, you could prevent a user from entering any values that are not numbers. Alternatively,
you could inform the user that an invalid input was entered if he or she tries to do a calculation with
letters and request them to enter the correct data type. This will be covered in Grade 11 and 12.

● Length validation ensures that the data entered is the correct length. In the Smartphone Login
application created above, you could use length validation to ensure that all passwords are at least
eight characters long. For example:

 ….
 sPassword := edtPassword.text;
if length (sPassword) >= 8 then
 ….
 Else
 ShowMessage('Password requires 8 or more characters');
 ….

Take note

‘’ refers to a null/empty string

Take note

The Length function determines
the length of a string.

Validating data6.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 137 2019/09/26 09:56

138 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

● Range validation is used to ensure that number or date falls within a
speci� c range. For example, in a form asking for age, you might use range
validation to ensure the age is between 0 and 120. For example:

 iAge:=StrToInt(edtAge.text);
 if (iAge>0) AND (iAge<120) then
 ….
 Else
 ShowMessage('Enter an age in the range 1 to 119');
 ….

● Pattern matching validation ensures that the data entered matches a
speci� c pattern. For example, all email addresses would match the pattern
that they contain a bunch of letters or numbers, followed by an ‘@’ sign,
followed by more letters or numbers, followed by two or more groups of
characters separated by full stops. You will learn about pattern matching
validation in Grades10 and 11.

IMPLEMENTATION OF INPUT VALIDATION
Input validation can be implemented in several different ways:
● One way to implement input validation is to inform the user of the problem

before they try to process the data. This could be in the form of an error
message or a disabled button with an error message.

● A second way of implementing input validation is to check the data before it
is processed. With this implementation, you build certain checks or
conditional statements into your program to ensure that you do not process
incorrect data. When these statements identify incorrect data, you send a
message to inform the user of the problem.

To see how input validation can be used in Delphi, work through the following
guided activities.

Guided activity 6.3 Input validation

Open the project saved in the 06 – Input Validation folder.
You should see the following user interface.

In this application, complete the following tasks:

6.3.1 Create an OnClick event for the � rst [Validate] button.

6.3.2 When the button is pressed, use a conditional
statement to make sure the edit box’s value is not
blank (that is, it is not equal to ‘’).

a. If it is not blank, set the value of the � rst
Test label to ‘Correct’ and enable the second
[Validate] button.

b. If it is blank, set the value of the Test label to
‘Incorrect’.

c. Add code to enable the second [Validate] button.

Did you know

In general, it is better to
prevent a user from making
a mistake than to inform
the user that they have
made a mistake afterwards.

IT-Practical-LB-Gr10 INK06.indb 138 2019/09/26 09:56

139TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.2 Validating data

Guided activity 6.3 Input validation continued

6.3.3 Create an OnClick event for the second [Validate] button.

6.3.4 Create a conditional statement to check if the text entered into the second edit box
is equal to the name of one of the days of the week.

a. If it is, set the label’s caption to ‘Correct’.

b. If it is not, set the label’s caption to ‘Incorrect’.

c. Add code to enable the [Next] button.

6.3.5 Create an OnClick event for the [Next] button.

6.3.6 Show a message congratulating the user on completing data validation if the [Next]
button is clicked.

6.3.7 Save and test your application.

Guided activity 6.4 Intermediate calculator validation

Open the project stored in your 06 – Intermediate Calculator folder.

Using this application, add the following data validation:

6.4.1 For the [Sqrt] button, add a conditional statement to make sure the number entered
is equal to or larger than 0. This prevents the program from trying to � nd the square
root of a negative number.

IT-Practical-LB-Gr10 INK06.indb 139 2019/09/26 09:56

140 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided activity 6.4 Intermediate calculator validation continued

6.4.2 For the [/] button (that is, the division button), add a conditional statement to make
sure the value entered into the second edit box is not 0. This prevents the program
from dividing by 0.

In both cases, you can use the ShowMessage function to inform the user if they have
entered an illegal number into the edit boxes. Once done, save the project in the
06 – Intermediate Calculator folder.

Activity 6.2 Indi vidual activity

6.2.1 Your friend is a young graphic designer who has designed the following user
interface for your application, called GymRegistration_p.

a. Use this design as a basis to create a Delphi sign-up form that asks the user’s
name, surname, gender, birthdate, ID, email, cellphone number, residential
address, weight, and length.

b. Create an IPO chart for this application. In the Input section, describe � ve useful
input validation techniques that can be added to the form. In the Processing
section, describe how you would implement each of these input validation
techniques. Finally, in the Output section, list the error messages that you would
give to the user if the input validation is not successful.

c. Implement the input validation techniques in your application to prevent invalid
inputs.

6.2.2 Choose a program that you have created this year.

a. Describe three input validation techniques that could be added to the
application.

b. Implement one of the input validation techniques.

IT-Practical-LB-Gr10 INK06.indb 140 2019/09/26 09:56

141TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.3 IN operator

In Chapter 5 you learned how to use the CASE statement to check if a variable falls within a speci� c range.
Speci� cally, you checked if a percentage value occurred in a speci� c range and then used the result to
display a message to the user.

Look at the following code:

CASE range comparisons
case iPercentage of
 0..69 : ShowMessage('F'); // 0..69 represents all numbers from 0 to 69
 70..79 : ShowMessage('B');
 80..100 : ShowMessage('A');
else
 ShowMessage('Invalid mark');
end;

This CASE statement checks if a speci� c value occurs within a set
of values. Note that a range of number is shown in the format:
n..m where n is the start number and m is the end of the range.
Two dots(..) represents all numbers between n to m.

IN OPERATOR
You can test if an element is included in a set of values using the IN operator. The test returns TRUE if the
element is found in the set of values; otherwise the test returns FALSE.

SYNTAX OF THE IN OPERATOR:
● The syntax used for the IN operator is: Element IN [set of Values]
Take note of the following:
● Element is the variable that is being tested against the set of values
● Element variable/value can only be an ordinal data type (integer, char & Boolean). The values in the

[set of values] must match the data type of element
● The IN operator checks whether the Element is found in the set [set of Values]. The set of values

appear within square brackets []

For example:

 Var cLetter:char;
 ….
 bFound := cLetter IN ['a','b','c'];
 if bFound then
 ShowMessage('Letter Valid')
 else
 ShowMessage('Letter Invalid');
 …

Notes
● If cLetter has the value ‘a’ then bFound will be TRUE and ‘Letter Valid’ will display. Remember that

‘a’ is not the same as ‘A’
● If cLetter has any other value than ‘a’, ‘b’ or ‘c’, then bFound will be FALSE and ‘Letter Invalid’ will

display.

Did you know

You can only use integers
or characters in a set, not
string or real values.

IN operator6.3

UNIT

IT-Practical-LB-Gr10 INK06.indb 141 2019/09/26 09:56

142 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

When using the IN operator, the set of values can be:
● a range of values (with the minimum and maximum values separated by two full stops)
● individual values (with the values separated by commas)
● a combination of a range of values and individual values.

Here are some examples of statements using an IN operator:
● if iMonth in [1,2,3,4,5] then .. Checks whether iMonth is one of the � rst 5 months. The set

of number can also be written as a range [1..5] because the
numbers are inclusive

● if iNum in [1..5,8, 50..53] … Checks whether iNum is in the set 1 to 5, 8 and 50 to 53
● if cLetter IN ['A'..'Z','a'..'z'] then … 'A'..'Z' and 'a'..'z' indicate a range of uppercase and

lowercase letters

When creating a conditional statement, the IN operator is used in place of the equals operator because
you are using the conditional statement to see if your value can be found inside the set.
To see how a set can be used in an application, work through the following example.

Example 6.3 Birthday validation

You created an application that asks users to enter the day, month and year for their birthday. However, you noticed
that a small percentage of users either make typing errors or enter the correct value in the wrong place.

To � x this problem, you want to add input validation to your birthday application that will ensure the day entered is
between 1 and 31, the month is between 1 and 12, and the year is in the range 1923..2019.

To do this:
1. Create a new application and save it in the folder 06 – Birthday validation.

2. Create the following user interface.

3. Create an OnClick event for the [Submit] button.

4. Declare three local integers called iDay, iMonth and iYear.

5. The variable declaration should now look as follows:

Variable declaration
var
 iDay, iMonth, iYear : Integer;

IT-Practical-LB-Gr10 INK06.indb 142 2019/09/26 09:56

143TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.3 IN operator

Example 6.3 Birthday validation continued

6. Read the values from the edtDay, edtMonth and edtYear component and store the values in iDay, iMonth and
iYear respectively.

Setting the integers’ values
iDay := StrToInt(edtDay.Text);
iMonth := StrToInt(edtMonth.Text);
iYear := StrToInt(edtYear.Text);

7. Use conditional statements to check whether:

● iDay is in the range 1 to 31
● iMonth is in the range 1 to 12
● iYear is in the range 1923..2019

Use conditional statements to show a message if the integers are not found in the set of valid values.
Remember to surround the condition with brackets and place the NOT operator before the condition.
The conditional statements are shown below.

Conditional statements
if not (iDay IN [1..31]) then
 ShowMessage('Day is incorrect');

if not (iMonth IN [1..12]) then
 ShowMessage('Month is incorrect');

if not (iYear IN [1923..2019]) then
 ShowMessage('Year is incorrect');

8. Save and test your application. Try using both valid and invalid inputs to see how the program reacts.

Congratulations! You have created an application that used sets and the IN operator to do data validation.

Activity 6.3

Using a pen and paper, write down statements that do the following.

6.3.1 Give a set that could contain any letter.

6.3.2 Give a set that could contain all the special characters that could be used as part of a password.

6.3.3 Give a set that could contain any number from 0 to 50.

6.3.4 Give a set that contains the capital letters A, B, C, D, E and F.

6.3.5 Give a set that contains the numbers 7, 12 and 25.

6.3.6 Check if the letter “c” is found in a set.

IT-Practical-LB-Gr10 INK06.indb 143 2019/09/26 09:56

144 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 6.4

Write an application that will allow a user to apply for
membership at a music store. Use data validation techniques
to prevent accidental incorrect input.

Input must follow the following rules to be valid:

● The name and surname:
 The � eld is compulsory – it cannot be left empty.

● The date of application must correspond with the actual
date:
 The date must be entered in the format yyyy/mm/dd.

● The number of items bought in the month must:
 Be an integer value.

 Must be more than 10 and less than 25.

● Maximum amount to spend must:
 Be a real value.

 Not exceed R500.

 May not be smaller than 0.

● Age:
 The applicant must be older than 18.

6.4.1 Complete the table below to record the possible errors and how it will be addressed. The � rst instance has been
done for you:

1. Name and surname Possible error Data validation technique

May not be left empty Submit without having � lled in a name and
surname

Test for length of string. Error
message: ‘Please enter a value’

2. Date of application Incorrect date

Date in incorrect format

3. Number of items Not an integer value

Not in the range 10 to 25

4. Maximum amount Not a real value

Value exceeds R500

Value less than 0

5. Age Not Integer value

Applicant younger than 18.

6.4.2 Use the solutions suggested in your table to write code to validate data for all input components.

IT-Practical-LB-Gr10 INK06.indb 144 2019/09/26 09:56

145TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.3 IN operator

Activity 6.5

Open the RegisterAccount_p project from the 06 – Register Account folder.

A user must enter a password to register an account with their
Favourite Music Store. They are then asked to verify the
password by retyping it.

Other information required include the user’s cell phone
number and email address.

6.5.1 Add code to btnRegister to verify the data. Data is
valid when:

● all Information is entered
● the two passwords match
● the cell number Is of the correct data type
● the cell number has the correct number of digits

6.5.2 Code an error message for each type of data validation done.

ARTWORK PLACED IS

PLACEHOLDER FROM

MANUSCRIPT

ARTWORK PLACED IS

PLACEHOLDER FROM

MANUSCRIPT

IT-Practical-LB-Gr10 INK06.indb 145 2019/09/26 09:56

146 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Validate
data

Types of input validation
● Required input
● Data type validation
● Length validation
● Range validation
● Pattern matching validation

If a user is asked to supply data for input,
many unpredictable things may happen. The
user may have:

● Misunderstood what data is expected
● Ignore your prompt and hit ENTER

(no data was entered)
● Typed in a wrong piece of data (letters

instead of a number)
● Supplies correct data, but outside the

acceptable range.

We as application builders need to control
all input data and test it if necessary.

The IN-
operator

E.g.
Test for “long” months (31 days) in a year:
IF (iMonthNum IN [1,3,5,7,8,10,12]) then
 ShowMessage(‘Selected month has 31 days.’);
Test for gender in an ID-number:
IF (iRSAID[7] IN [1..4]) then
 ShowMessage(‘ID comes from a female.’);
Test for a capital letter:
IF (sFirstName[1] IN [‘A’..’Z’]) then
 ShowMessage(‘The � rst name starts with a
 capital letter.’);

The IN operator is used to see whether
one speci� c item forms part of a
collection of unique ordinal items, not
necessarily in a speci� c order.

All items must be of the same data
type to belong to one set.

VALIDATING DATA

● Ascending order: A → Z
● Descending order: Z → A
● For words compare matching

characters
● ASCII table is the foundation for

char / string comparison

True ← (‘H’ > ‘A’)

True ← (‘a’ > ‘H’)

True ← (65 < 75)

True ← (‘2’ < ‘A’)

True ← (‘A’ > ‘❤’)

The length of a string = the number of characters

● Indexing of characters in a string:
● myWord[1] returns 1st character of myWord
● Most known characters have ASCII values
● For comparison the ASCII value is used
● Produce special char with: Alt + ext. ASCII

E.g.: √ (Alt + 251) ë (Alt + 137)

String comparison
(According to
ASCII values)

Consolidation

IT-Practical-LB-Gr10 INK06.indb 146 2019/09/26 09:56

147TERM 2 I CHAPTER 6 VALIDATING DATA I UNIT 6.3 Consolidation

Consolidation questions Chapter 6: Validating data

1. One way in which to make sure that correct data is entered by the user is through using String comparison.

a. What type of data is stored in a string variable?

b. If you want to verify a user’s password, which conditional operator would you use in your string comparison?

2. Explain how it is possible for Delphi to interpret a condition, such as, If ‘Cat’ > ’Dog’.

3. Compare the error messages below:

a. Both errors were caused by a user error. Explain the user actions that led to these errors.

b. Suggest validation techniques that you could apply to prevent this error in future.

4. Give two reasons why it is important to validate input data.

5. A user is asked to enter their cell number.

a. Name two types of validation that you would apply to ensure that the data is valid.

b. Write down pseudo code for the validation described above.

6. Describe one instance where you would use range validation.

7. Carefully consider the following statement: Valid data is not always correct.
Explain why this statement is TRUE, by giving an example.

8. Study the interface and different input components of the interface below carefully. Use the interface to create a
new program that will allow learners to enter a talent competition at your school. Add the necessary data
validation to ensure that all inputs are valid.

Take note of the following:

● The genre must include the word ‘Dance’ OR ‘Music’. Genres could be Contemporary Dance, Jazz Music, etc.
● The name and surname must appear in capital letters.

IT-Practical-LB-Gr10 INK06.indb 147 2019/09/26 09:56

148 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation questions Chapter 6: Validating data continued

9. You need to generate secure IDs for your teacher to use as identi� cation for network pro� les for your
Grade 10 class.

To generate the secure ID the string is built up by:
● Adding a number that is determined by the � rst letter of the user’s name according to the following pattern:

 A to C are represented by 1

 D to F are represented by 2

 G to H are represented by 3

 K to L are represented by 4

 M to O are represented by 5

 P to S are represented by 6

 S to V are represented by 7

 W to Z are represented by 8

● Adding three characters entered by the user:

● Adding the age of the user

● Adding the height of the user, displaying at least one
decimal value

Open the Secure_p project from the 06 – Secure ID
folder and complete the code as follows.

a. Check that all data entered is valid.

Take note of the following:
● The � rst letter of the name is a capital letter.
● The user must enter any 3 characters.
● The age must be entered as an integer value and

be appropriate for Grade 10. Allow for learners
two years older and two years younger than the
usual age for Grade 10.

● The height must be entered as a real number.

b. Complete the code for btnCreate by creating a string
following the rules explained above.

c. Display the SecureID in the label, lblSecureID.

d. Save and close your program.

IT-Practical-LB-Gr10 INK06.indb 148 2019/09/26 09:56

149TERM 3 I CHAPTER 7 REPETITION

TERM 3

REPETITION
 CHAPTER

7

CHAPTER UNITS

Unit 7.1 Using the ListBox and ComboBox components

Unit 7.2 Looping algorithms and � owchart

Unit 7.3 FOR loop

Unit 7.4 Using loops with components

Unit 7.5 Using the Input Box

Unit 7.6 REPEAT loop

Unit 7.7 WHILE loop

Unit 7.8 Applying loop structures

Unit 7.9 Initialising variables using the OnShow event

Unit 7.10 Timers

Learning outcomes

At the end of this chapter you should be able to:
● create and use a ListBox
● explain and apply FOR loops in your programming
● explain and apply WHILE loops in your programming
● explain and apply REPEAT loops in your programming
● initialise variables using the OnShow event
● apply loops with different components
● use the timer component to create code that runs when a timer event triggers.

INTRODUCTION
There are many situations in real life where you need to repeat the same action
until a speci� c goal is reached. When you practice for a sport or practice an
instrument, you repeat the same steps until you master the skill. In fact, most
people repeat the same routines: every morning they wake up and every night
they go to sleep, with only the decisions made during the day differing slightly!
Think about your morning routine. Do you need to create a new morning routine
every morning or can you simply repeat the same basic tasks each morning
without thinking?

IT-Practical-LB-Gr10 INK06.indb 149 2019/09/26 09:56

150 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Figure 7.1: Most people follow the same morning routine every day

The advantage of repeating the same tasks is that you only need to decide how
to do the task once.

So far you learned to read in data in a variable. If you need to read ten values and
keep a running total, then you could have done this in the following way:
● initialise the running total
● read a value
● update running total with this value
● read a value
● update running total with this value
● repeat until all values are read and added to the running total.

For this, you will need to write about 21 lines of code! This will make your program
long and cumbersome. Imagine how many lines of code would be required to
add 100 numbers!

In Delphi, you can use looping constructs that allows you to write a set of repetitive
tasks once to achieve the same purpose. This chapter will teach you how to
create programming loops.

New words

loops – loops repeat
certain lines of code until a
speci� c condition is met

IT-Practical-LB-Gr10 INK06.indb 150 2019/09/26 09:56

151TERM 3 I CHAPTER 7 REPETITION I UNIT 7.1 Using the listbox and combobox components

The ListBox component is used to display and manage a scrollable list of items (that is, a list of items that
you can scroll up and down in). If you can see a fully populated (top to bottom) ListBox, then a vertical
scroll bar automatically appears. The same happens with the horizontal scroll bar.

To place a ListBox component on the form:
● select the TlistBox component from the Standard palette and place it on the form
● the pre� x, lst, is used in naming the component

Each line inside the ListBox is called an item. In simple terms, we can think of one item as being a string

and many items as data type TStrings. TStrings represents a list of strings.

POPULATING A LISTBOX
● To populate a ListBox with items during design time from the Object Inspector:

 select the ListBox
 in the Items property click the ellipse (…)

 a String List Editor dialog box will appear

 type the list of items on separate lines in the String List Editor
 click OK.

● the items will now be displayed in the ListBox component.

● To add an item to a ListBox during run time simply execute this code per item:

lstData.Items.Add('Butter');

This value will be added to the Items property programmatically.

RETRIEVING INFORMATION FROM A LISTBOX
All captured lines, which are added to the ListBox, are put in sequence and are given an index number
called, ItemIndex. If you need to read a line from a ListBox, you can access it using the ItemIndex. So, if
you click on a line inside the ListBox, it will be highlighted and the ItemIndex value can be read.

Using the listbox and combobox components7.1

UNIT

IT-Practical-LB-Gr10 INK06.indb 151 2019/09/26 09:56

152 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

You will also get the sequence number for the line (Item) starting from 0 (we say
it is zero-based). For example:

iIndex := lstData.ItemIndex; // If first line was
// highlighted it
// returned 0

To access the content/text of the line you selected, use the following code to
retrieve the value of that speci� c item:

sData := lstData.Items[iIndex]; // Retrieve the selected
// item’s contents

sName := lstNames.items[0] ; // Reads the first value
// in the list

sName := lstNames.Items[3]; // Reads the fourth
// value in the list

The property ItemIndex is readable and writable. This means you can assign a
value to it. If you execute the following line, you will see that line 2 will be
highlighted:

lstData.ItemIndex := 1; // Line 2 will be selected
// during run time

To test whether an item exists inside a ListBox you can use the method IndexOf().
IndexOf() takes one argument, the string to search for and it returns the index of
the item where the string was found.

Example 7.1

Compare the given code with the ListBox items shown:

iIndex := lstData.Items.IndexOf('Three');

The integer iIndex will be assigned the value 2.

If we executed the following line:

iIndex := lstData.Items.IndexOf('Six');

The integer iIndex will be assigned the value –1, because no Item could be found to
match ‘six’.

You can also test if an item is in the list by determining the index position of the
item. If the index position is –1, then the item is not in the list.

Example 7.2

If lstData.Items.IndexOf('Six')<>-1 then
 ...
Else
 ShowMessage('Item not in the list');

New words

readable – you can access
the value

writable – you can add
information to a value

IT-Practical-LB-Gr10 INK06.indb 152 2019/09/26 09:56

153TERM 3 I CHAPTER 7 REPETITION I UNIT 7.1 Using the listbox and combobox components

Let’s have a look at some more useful properties of the ListBox.

COUNTING THE NUMBER OF ITEMS IN THE LISTBOX
You can � nd out how many items there are in a ListBox by using the following
code:

iCount := lstListBox1.Items.Count // will return the
// number of items in
// the ListBox

IMPORTANT LISTBOX PROPERTIES
● A ListBox has a property Sorted, which is set to FALSE by default. If it is set

to TRUE, all lines will be sorted in ascending order (that is, A to Z). Once
sorted, the process cannot be reversed. An Unsort property does not exist.

● A tab-stop size can be assigned to the property TabWidth. The number
assigned sets equal-sized tab-stops across the ListBox in dialog units.
Each character is approximately four dialog units wide.

Example 7.3

View the three screenshots showing different ListBoxes.

All ListBoxes are assigned the font ‘Courier New’ with a TabWidth := 20.

See how the tab distance grows bigger as the font size increases. However, the � rst
tab-stop is always positioned just after the ‘5’, that is, 20 (TabWidth) / 5 (characters) = 4
(dialog units per character).

To use the de� ned tab-stops (TabWidth) of a ListBox, the code must explicitly contain
the tab control character (#9), which is de� ned at position 9 as HT (Horizontal Tab) in the
ASCII table.

To produce the four vertical bars (as shown in the example) on the third line, you must
execute the following code:

lstData.Items.Add(#9 + '|' + #9 + '|' + #9 + '|'+ #9
+ '|');

Take note

● To activate a tabulator effect, you must set the TabWidth and include tabs (#9) in
your text.

● To adjust the correct tab width for a tabular neat output with data columns is a “trial
and error” exercise.

New words

dialog units – the average
width and height of
characters in the system
font

A COMPUTER SCIENCE
QUESTION

https://www.youtube.com/
watch?v=k4RRi_ntQc8

IT-Practical-LB-Gr10 INK06.indb 153 2019/09/26 09:56

154 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

A ListBox can display bulky data in a more compact format by adding Columns

to the ListBox. The property Columns works similarly to the columns in
MS-Word. The columns are evenly spaced across the width of the ListBox.
For example, in the screenshot below, the columns are set to 2 and the ListBox

is anchored to the right and bottom.

Even when the ListBox is resized, it keeps the data in two columns, but rearranges
the data. The data that does not � t well is expanded to the right and can be seen
when moving the horizontal scroll bar.

IT-Practical-LB-Gr10 INK06.indb 154 2019/09/26 09:56

155TERM 3 I CHAPTER 7 REPETITION I UNIT 7.1 Using the listbox and combobox components

The table below provides a list of other useful ListBox properties.

Table 7.1: Other useful ListBox properties/methods

PROPERTIES /METHODS DESCRIPTION

lstListBox1.DeleteSelected; To delete the selected item from the ListBox

lstListBox1.Items.Delete(lstListBox1.ItemIndex); To delete an item from a speci� c ItemIndex position

lstListBox.Items.Insert(lstListBox1.
ItemIndex,edtValue.Text)

To insert edtValue.text to position ItemIndex

lstListBox1.Items.Clear; Clears the ListBox

lstListBox1.Items.LoadFromFile(‘Data.txt’); Data from the text � le Data.txt is used to populate the ListBox

lstListBox1.Items.SaveToFile(‘Data.txt’); Data from the ListBox is saved to the text � le Data.txt

iCount:=lstListBox1.Items.Count Will return an integer value containing the number of items in the ListBox

showMessage(lstListBox1.Items[4]); Will display the item at ItemIndex 4, that is the 5th item in the ListBox

Activity 7.1

You have some movies on an external hard drive. You want an application that will help you to manage your movies.

Study the interface shown on the right, then open the Movies_p project from the 07 – Movies folder � le and complete the
application as follows:

7.1.1 Write code for btnLoadMovies to load the movies
from the � le Movies.txt in your folder into the ListBox.

7.1.2 a. Write the code for btnFind to check whether
the movie you are looking for is in the ListBox.
The name of the movie should be entered into
edtLookFor.

b. Use a ShowMessage dialog box to indicate
whether or not the movie is found.

HINT: If the item is not in the list the index number
will be -1.

7.1.3 Add data validation to btnAdd to prevent a user from adding the text ‘Movie to Add’ to the list.

7.1.4 Write code for btnAdd to add a new movie to the list. The name of the movie should be entered in edtAdd.

7.1.5 Add code to the btnDelete event to delete a movie that a user clicked on in the ListBox.

7.1.6 Write the code for btnNumMovies to display the number of movies in the ListBox in a ShowMessage dialog box.

7.1.7 Write code for btnSaveChanges to save the content of the ListBox as it is displayed in lstMovies.

7.1.8 Save and run your app.

THE COMBOBOX
A ComboBox is a scrollable drop-down list from which a user is able to select
an item. The ComboBox is very similar to the ListBox, except that the items
are not instantly visible nor displayed. You must click on a drop-down
arrowhead to display a limited number of items. It is a component optimised
to serve as a selection tool. Both the ListBox and the ComboBox allow the
user to select only one choice at a time.

IT-Practical-LB-Gr10 INK06.indb 155 2019/09/26 09:56

156 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

● To place a ComboBox component on the form:
 select TComboBox component from the Standard palette and place on it the form
 the pre� x, cmb, is used in naming the component

● To � ll the ComboBox with items from the Object Inspector:
 select the ComboBox
 in the Items property click the ellipse (…). A String List Editor Dialog box will appear
 type the item list in the Editor on separate lines and click OK.

● To set the default prompt text for the ComboBox:
 select the ComboBox
 in the Text property enter some meaningful text (for example, Select grocery items) about the

selections in the ComboBox. This text will appear only once before a selection is made. Once a
selection has been made from the items in the ComboBox, the selected item displays:

● To add an item, for example, butter, to a ComboBox during run time, use the code found below:

cmbComboBox1.Items.Add('Butter'); //will add butter to the list

● To retrieve the index of the selected item execute the code as shown below:

iIndex := cmbComboBox1.ItemIndex;

Just like the ListBox, if an item is not selected, ItemIndex returns -1 and the item position starts from 0.
● To retrieve an item from the ComboBox execute the code as shown below:

//will return an item from the list at the selected index position
sGroceryItem:=cmbComboBox1.Items[cmbComboBox1.ItemIndex];

or

sGroceryItem = cmbComboBox1.text; // will return the text at the selected
// index position

or

sGroceryItem := cmbChoice.Items[0]; // will retrieve the first item in
// the Combo Box

● To count the number of items in a ComboBox execute the code as shown below:

iCount := cmbComboBox1.Items.Count; // returns the number of items in
// the ComboBox

IT-Practical-LB-Gr10 INK06.indb 156 2019/09/26 09:56

157TERM 3 I CHAPTER 7 REPETITION I UNIT 7.1 Using the listbox and combobox components

The table below lists other useful ComboBox properties.

Table 7.2: Other useful Combo Box properties/methods

PROPERTIES /METHODS DESCRIPTION

cmbComboBox1.DeleteSelected; To delete the selected item from the combo box

cmbComboBox1.Items.Delete(cmbComboBox1.
ItemIndex);

To delete an item from a speci� c ItemIndex position

cmbComboBox1.Items.Insert(cmbComboBox1.
ItemIndex,edtValue.Text)

To insert edtValue.text to position ItemIndex

cmbComboBox1.Clear; Clears the combo box

cmbComboBox1.Items.LoadFromFile(‘Data.txt’); Data from the text � le Data.txt is used to populate the
combo box

cmbComboBox1.Items.SaveToFile(‘Data.txt’); Data from the combo box is saved to the text � le Data.txt

iCount:=cmbComboBox1.Items.Count Will return an integer value containing the number of
items in the combo box

showMessage(cmbComboBox1.Items[4]); Will display the item at ItemIndex 4, that is the 5th item in
the combo box

Activity 7.2

The Subject selector application allows a user to choose subjects and display the chosen subjects in a ListBox.

Study the interface of the application shown on the right.

7.1.1 Recreate the interface of this application.

Note: the following components are used on this
interface:
● ComboBox
● ListBox
● six buttons
● four labels

7.1.2 Write the code for each button as follows:

a. [Load subject] button loads the list of subjects
from the subjectlist.txt � le (provided) in the
ComboBox.

b. [Add subject to list] button adds the subject ‘Life
Orientation’ to the ComboBox.

c. The [Select] button writes the subject selected from the ComboBox to the ListBox.

d. The [Number of Subjects available] button counts the number of items in the ComboBox and displays it in
a label.

e. The [Number of Subject chosen] button counts the number of subjects in the ListBox.

f. The [Remove a subject] button deletes the Item clicked on In the ListBox.

Expand your program as follows:

● Add data validation to the [Number of subjects chosen] button to warn a user if more than seven subjects
have been selected.

● Add a button that will remove a subject from the list in the ComboBox.

IT-Practical-LB-Gr10 INK06.indb 157 2019/09/26 09:56

158 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Repetition concepts7.2

UNIT

Loops are not limited for input and output purposes only. Imagine that you want to create an algorithm in
which you want to increase a counter by one until you reach 6. To do this, you could create the
following algorithm:
1. N = 0 2. N = N + 1
3. N = N + 1 4. N = N + 1
5. N = N + 1 6. N = N + 1
7. N = N + 1 8. Display N

While this algorithm would technically provide you with the correct answer, it would be a very clumsy way
of obtaining an answer. Imagine if you need to do this 1 000 times to reach a total of 1 000!

A much more ef� cient method of � nding the answer is to create a loop in your algorithm. This loop tells
your program to repeat certain lines of code, until a condition is met.

With a loop, your program changes to:

ALGORITHM FLOWCHART

Number = 0
while number < 6

Number = Number + 1
Display Number

Notes:
● number starts from an initial value of 0
● in this case we know that the statement

Number = Number + 1 must be executed six times
● the statement Number = Number + 1 is placed inside the

loop structure
● all statement/s that appear in a loop are indented
● the loop structure determines how many times it will execute
● the statement Number = Number + 1; is therefore executed

six times

Display Number

Start

1

2

4

3

Number = 0

Number = Number + 1

End

Number < 6
False

True

Let’s trace through the � owchart:

BOX NUMBER N N<6 OUTPUT

1 0
2 True
3 1
2 True
3 2
2 True
3 3
2 True
3 4
2 True
3 5
2 True
3 6
2 False
4 6
Stop

IT-Practical-LB-Gr10 INK06.indb 158 2019/09/26 09:56

159TERM 3 I CHAPTER 7 REPETITION I UNIT 7.2 Repetition concepts

Take note

● Loops adhere to the ITC principle:

ITC PRINCIPLE

Initialise Variable/s used in loop conditions must be assigned value/s before
the condition is evaluated

Number = 0

Test Variable/s is/are tested in the loop condition Number < 6

Change Statements inside the body of the loop, should change the value of
variable/s used in the loop condition; otherwise condition/s will
always be TRUE, causing the loop to run in� nitely (an in� nite loop)

Number = Number + 1

● Box 2 is executed seven times
● Boxes 2 and 3 form the loop of the � owchart
● While Number<6, the condition (test) evaluates to TRUE and the body of the loop is executed. When the

condition (test) evaluates to FALSE, box 4 is executed
● The condition becomes FALSE when Number becomes 6.

There are a number of different conditions that can be used to stop a loop:
● once it has run the required number of times
● once it reaches a certain value
● based on user input.

Example 7.4

Write an algorithm to � nd the sum of � ve integer values input by the user and display the sum of these values.

ALGORITHM FLOWCHART

Sum = 0
loop c = 1 to 5
 Get X
 Sum = Sum + X
Display Sum

Sum is set to an initial value of 0

The statement loop c = 1 to 5, indicates that this is a
pre-determined loop. We know that the statements in
the body of the loop must be executed � ve times:

 Get X
 Sum = Sum + X

The loop variable, C, is a counter that starts with an
initial value of 1. Each time the body of the loop is
executed, the loop counter is incremented by 1 until
C = 6

Once the counter has reached its last value, which is 6,
the loop is exited and the statement that follows the
loop, is executed. In this case, it is the Display Sum
statement

The � owchart representation of the algorithm is shown
on the right:

Begin

1

2

3 7

4

5

6

False

True

SUM=0

C=1

C<=5 DISPLAY SUM

END
READ NUM

C=C+1

SUM=SUM+NUM

IT-Practical-LB-Gr10 INK06.indb 159 2019/09/26 09:56

160 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.4 continued

Trace through the � owchart on the previous page using the following inputs: 8, 4, 2, 11 and 7

BOX NUMBER SUM C NUM COUNT < 5 OUTPUT

1 0

2 1

3 True

4 8

5 8

6 2

3 True

4 4

5 12

6 3

3 True

4 2

5 14

6 4

3 True

4 11

5 25

6 5

3 True

4 7

5 32

6 6

3 False

7 32

Stop

Using a loop in your algorithm allows it to be more � exible. For example, in the algorithm above, a statement
could be added at beginning of the algorithm to prompt the user to enter how many numbers he or she
wants to add. The integer variable, iTimes, storing this number, can then replace the end value, 5, in the
loop and the condition (test) C <= 5, will change to C <= iTimes.

IT-Practical-LB-Gr10 INK06.indb 160 2019/09/26 09:56

161TERM 3 I CHAPTER 7 REPETITION I UNIT 7.2 Repetition concepts

Activity 7.3

The output of this activity is a Christmas tree built up of lines of x’s as shown in the � gure alongside.
Follow the steps below to complete this activity:

7.3.1 Understand the problem:

● There are two loops, one to make the ‘tree’ and one to make the ‘stem’ of the tree.
● For the tree you need to add an x to the existing string.
● For the stem you need to add one x at a time.

7.3.2 Create a � ow chart for the creation of this Christmas tree.

CHRISTMAS TREE FLOW CHART

End

Begin

TRUE

FALSE

DISPLAY STEM

P = P + 1

FALSE

TRUE

P = 1

C = 1

C <= 10

C = C + 1

DISPLAY TREE

P <= 3

STEM = XTREE = TREE + X

7.3.3 Write the algorithm based on the � ow chart.

ALGORITHM

loop C = 1 to 10
 tree = tree + x
 display tree
loop P = 1 to 3
 stem = x
 display stem

7.3.4 Draw a trace table for the algorithm above by completing the table below:

BOX NUMBER C C <= 10 TREE P P <= 3 STEM OUTPUT

x
xx
xxx
xxxx
xxxxx
xxxxxx
xxxxxxx
xxxxxxxx
xxxxxxxxx
xxxxxxxxxx

x
x
x

IT-Practical-LB-Gr10 INK06.indb 161 2019/09/26 09:56

162 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

A LOOP WITH A FIXED NUMBER OF ITERATIONS

Sometimes in programming, we need to repeat the same action over and over again. At times we are
aware of the number of repetitions in advance, whilst at other times, the number of repetitions depend on
a speci� c condition.

In this unit we will focus on a known number of loop iterations/repetitions � rst.

THE FOR LOOP
The FOR loop is represented in an algorithm below:

FOR iCount ← Minimum to Maximum do
BEGIN
 // 1 or more instruction(s)
END // iCount increment

● The FOR loop needs a counter. We will call it iCount in the next example.
● The loop starts with the reserved/keyword word, FOR, and the same line ends with a DO.
● After the loop de� nition line, we have a BEGIN-END block of code, that will be executed several times.
● Counting from a minimum value to a maximum. Each iteration of the loop increases the counter

iCount by one. If one more than the maximum value is reached by the counter, the iteration comes to
an end and the statement after the loop is executed.

The FOR loop statement in an algorithm does not differ much from the Delphi syntax on the next page.

Let’s follow the logic � ow of the FOR loop in the illustration of a more general � owchart below:

iCount ← 1

iCount ← iCount + 1

Instruction to
be repeated

BeginStart

iCount <= 10

End

False
True

I

T

C

FOR…Do loop7.3

UNIT

IT-Practical-LB-Gr10 INK06.indb 162 2019/09/26 09:56

163TERM 3 I CHAPTER 7 REPETITION I UNIT 7.3 FOR…Do loop

The � owchart looks more complex than the algorithm or the Delphi code. That is because one line of code
hides several steps of activities:

For iCount := 1 to 10 do

Maximum/ End Value

Minimum/ Start Value

This line hides three important steps.

Let’s follow the sequence of these logic steps. Take note of the summarised I-T-C steps below:
● I for Initialize: This step initialises the counter (iCount) to the value 1.
● T for Testing: The counter is compared against the maximum or end-value (iCount <= 10) to con� rm

that the loop still operates in the provided range. If the expression results to FALSE, the loop quits.
● C for Change: The third step changes the value of the counter (iCount ← iCount + 1).

In Delphi we do get two types of for-loops:
● The incremental FOR-loop can be identi� ed by the command to: For iCount := 1 to 10 do … .

It typically starts with a small value, which is then increased by one each time to reach the maximum
or the end-value.

The Delphi source code for an incremental FOR-loop:

 Var
 iCount : Integer;
begin
 for iCount := 1 to 10 do
 begin
 // execute instruction(s)
 end; // increment by 1 (always 1)
end;

● The decremental FOR loop can be identi� ed by the command downto: For iCount := 10 downto 1
do … . It starts with a large (maximum) value to be decreased by one each time to reach the
minimum or the end-value.

The Delphi source code for a decremental FOR loop is:

Var
 iCount : Integer;
begin
 for iCount := 10 downto 1 do
 begin
 // execute instruction(s)
 end; // decrement by 1 (always -1)
end;

IT-Practical-LB-Gr10 INK06.indb 163 2019/09/26 09:56

164 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In the decremental FOR loop, the � ow of the algorithm does not change, but the values for the ITC steps
do. Take note of the position of the arrows in the illustration below:

iCount ← 10

iCount ← iCount – 1

Instruction to
be repeated

BeginStart

iCount >= 1

End

False

True

I

T

C

A Delphi FOR loop:
● loop counter can only be of ordinal data type (Integer, Char, Boolean).

Example
 var iCount:char;
 begin
 for iCount := 'a' to 'g' do // loop will be executed 7 times
 begin
 Statement/s to execute
 end;
 …
 end;

● loop counter can only be increased or decreased by a single unit, that means that we cannot
step-up or down by 2 or 0.5

● has a START and END value. We need to know these values before the loop is activated
● counter variable’s value cannot be changed in the loop by any line of code.

Activity 7.4

Design the application for which the interface is
shown alongside.

7.4.1 Add three edit boxes with descriptive labels, one
button and a label (displaying “16” on the
right-hand side) for counting the iterations. Give
descriptive names to the components.

7.4.2 Save your application under the folder name:
07 – FOR Loop with the project name ForLoop_p.

7.4.3 A user must provide the values for the � rst two edit boxes, namely the START and END values. Provide the
coding for the OnClick event of the button [Run FOR Loop]. The program must loop through from the minimum
(START) value to the maximum (END) value.

IT-Practical-LB-Gr10 INK06.indb 164 2019/09/26 09:56

165TERM 3 I CHAPTER 7 REPETITION I UNIT 7.3 FOR…Do loop

Hints:

● For you to see the changing value in the [Current Value] edit box, pause the execution of the program for half a
second each iteration. That can be achieved by using the coding below:

 Sleep(500); // Pauses the entire program for 500 milliseconds
// = half a second

● To force the program to refresh the form’s window so that you can see the updated values, insert another command:

 frmFormName.Refresh; // Form’s method Refresh() is enforcing a
// visual update of the form

7.4.4 Run the program.

a. Type in the Start and End values listed in the table below.

b. For each set of values, record the Current Value and the Number of Iterations once the program stops.

c. Explain the results.

START VALUE END VALUE CURRENT VALUE NUMBER OF ITERATIONS QUESTION / EXPLANATION

–5 10 10 16 Why 16?

50 70

1024 2024 Adapt Sleep()-value!

10 4

–30 –10

?? ?? Add own examples

Activity 7.5

Copy 07 – FOR Loop folder and rename it to 07 – FOR Loop Letters.

7.5.1 Adapt the program slightly so that it can run through
letters as shown by the interface alongside.

Hint: Do not forget to change the data types for the
START and END values and change the counter
variable from integer to Char.

7.5.2 Experiment with more input values.

Activity 7.6

Copy the 07 – FOR Loop folder and rename the copy to 07 – FOR Loop Decrement.

7.6.1 Adapt program so that it becomes a decremental FOR loop as shown below.

7.6.2 Experiment with more input values.

IT-Practical-LB-Gr10 INK06.indb 165 2019/09/26 09:56

166 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 7.7

Write down the Delphi code for following FOR loops:

7.7.1 A loop that shows the message ‘Hello, Loop!’ � ve times.

7.7.2 A loop that runs from 1 to 10 and displays the value of the counter with each repetition.

7.7.3 A loop that shows the � rst twelve multiples of 5.

7.7.4 A loop that calculates the sum of the � rst 1000 numbers and displays the total once the loop has completed.

Activity 7.8

Write the following FOR loops. A FOR loop that iterates from:

7.8.1 0 to 10 and shows each value.

7.8.2 1 to 100 and shows the square root of each value.

7.8.3 1 to 50 and increases the value of x by 2 inside each loop.

Activity 7.9 Find the factors of a number

A factor of a number is a number that can divide into a number with no remainder, for example, 3 is a factor of 6,
because 6 ÷ 3 = 2 without a remainder. However, 3 is not a factor of 5, because 5 ÷ 3 = 1 rem 2.

Use a FOR loop to � nd the factors of a number.

7.9.1 Study the � ow chart below and then write the algorithm for this program.

True

True

False

Start

Get iNum

Add iCount to list of factors

Display list of factors

iCount ← 1

iCount = iCount + 1

iCount <= iNum

iNum mod
iCount = 0

End

7.9.2 Factorials are the product of all consecutive numbers, starting from 1, that is, 1 × 2 × 3...n where n is a
positive integer number. To determine � ve factorial, 5! = 5 × 4 × 3 × 2 × 1

Understand the problem:

● I need to multiply all the numbers that make up the number.
● These numbers count down from the number, for example, 5, 4, 3, 2, 1, or count up from 1 to n.

a. Why can you use a loop to shorten your code?

b. What type of loop must you use to solve this problem?

c. Write the algorithm to � nd the factorials of a given number.

d. Write a program to determine the factorials of a number entered by the user.

IT-Practical-LB-Gr10 INK06.indb 166 2019/09/26 09:56

167TERM 3 I CHAPTER 7 REPETITION I UNIT 7.3 FOR…Do loop

DEVELOPING HIGH QUALITY ALGORITHMS
In Chapter 1 you learned about the principles of a quality algorithm. One of the principles that determined
the quality of an algorithm is called the order of the algorithm. The order of an algorithm is a measure of
the number of steps that are needed to solve a problem. The fewer steps that are needed, the higher the
quality of the algorithm.

The code to determine the factors of a number:

 …
 iNumber := StrToInt(edtNumber.Text);
 memDisplay.Lines.Add('The factors of '+IntToStr(iNumber));
 for iCount := 1 to iNumber do
 begin
 if iNumber mod iCount = 0 then
 memDisplay.Lines.Add(IntToStr(iCount);
 end;
 …

Note:
● In this code all the numbers from 1 to the value of iNumber will be checked to determine whether

they are a factor of iNumber or not.
● For example, if iNumber is 50, then each value from 1 to 50 will be checked to determine whether it

is a factor 50 or not.

Work through the following example to see how the factor � nder algorithm can be improved.

Example 7.5 Improved factor � nder (algorithm)

To understand how the algorithm can be improved, you need to look at the factors of a few numbers:

● Factors of 10 : 1, 2, 5, 10
● Factors of 12 : 1, 2, 3, 4, 6, 12
● Factors of 27 : 1, 3, 9, 27
Can you identify a pattern from these numbers?

In each case, the product of two factors is equal to the number. Stated differently, the number divided by the one
factor will always give you another factor.

To see how this works, divide the number 10 by each of its factors:

●
10___
1

 = 10 (this means that 1 and 10 are factors)

●
10___
2

 = 5 (this means that 2 and 5 are factors)

●
10___
5

 = 2 (this means that 5 and 2 are factors)

●
10___
10

 = 1 (this means that 10 and 1 are factors).

Every factor you � nd is therefore directly linked to a second factor, as shown below.

10 1 2 5 10

Number Factors

Figure 7.2: The relationship between the factors of 10

IT-Practical-LB-Gr10 INK06.indb 167 2019/09/26 09:56

168 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.5 Improved factor � nder (algorithm) continued

This suggests that you do not need to compare all the values from 1 to the number itself to � nd its factors. Instead,
you (at most) need to evaluate half the numbers. In fact, if you look at the factors for the number 9, you will see that,
in order to identify all the factors, you only need to compare the numbers up to the square root of the number.

The factors for 9 are 1, 3 and 9. Dividing the number by each of the factors you see that:

●
9__
1

 = 9 (this means that 1 and 9 are factors)

●
9__
3

 = 3 (this means that 3 is a factor)

●
9__
9

 = 1 (this means that 9 and 1 are factors)

This relationship is shown in the image below.

9 1 3 9

Number Factors

Figure 7.3: The relationship between the factors of 9

As this example shows, the biggest factor you need to evaluate is the square root of the number itself. Any number
larger than the square root can be found by dividing the number by a smaller factor. So, you can update the factor
� nder program as follows:

begin
 memDisplay.Lines.Clear;
 iNumber := StrToInt(edtNumber.Text);
 memDisplay.Lines.Add('The factors of '+IntToStr(iNumber));
 iEnd := Trunc(Sqrt(iNumber));
 for iCount := 1 to iEnd do
 begin
 if iNumber mod iCount = 0 then
 begin
 iFactor1 := iCount;
 iFactor2 := iNumber div iCount;
 if iFactor1 = iFactor2 then
 memDisplay.Lines.Add(IntToStr(iCount))
 else
 begin
 memDisplay.Lines.Add(IntToStr(iCount));
 memDisplay.Lines.Add(intToStr(iFactor2));
 end;
 end;
 end;

end;

IT-Practical-LB-Gr10 INK06.indb 168 2019/09/26 09:56

169TERM 3 I CHAPTER 7 REPETITION I UNIT 7.3 FOR…Do loop

Activity 7.10 Improve your Fibonacci sequence program

In Chapter 4 Consolidation Activity 16 you wrote the code to determine a Fibonacci sequence by clicking on the button
each time. Open the program you wrote.

7.10.1 Open the project and study the algorithm you wrote:

a. How can you shorten or improve it?

b. Think about how you can improve the way in which this program works. Is it best to have the user click the
button repeatedly to determine the length of the sequence?

c. Rewrite the algorithm to improve it.

7.10.2 Change your program to implement your improvements.

7.10.3 Add data validation to ensure that the input from the user is valid.

IT-Practical-LB-Gr10 INK06.indb 169 2019/09/26 09:56

170 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Earlier in this chapter you learnt about ListBoxes, ComboBoxes and RadioButtons. Look at the examples
in the illustration below:

Figure 7.4: Example showing a ListBox, RadioButtons and ComboBox

The following is true for all three components:
● The � rst element is stored in ItemIndex 0.
● You can access any items from the components using the Items property. For example:

 sNum1:=TListBox.Items[0]; // will return the string 1
 iNum2:=StrToInt(TlistBox.Items[4]); // will return the integer value 5
 sNum3:=TComboBox.Items[2] ; //will return the string 3
 iNum4:=StrToInt(TcomboBox.Items[6]) ; //will return the integer value 7
 sNum5:=TRadioGroup.Items[5]; // will return the string 6
 iNum6:= StrToInt(TRadioGroup.Items[5]); // will return the integer value 6

● Items can be added to the components using the format:

componentName.Items.Add();

● To determine the number of items found in the components:

iCount := ComponentName.Items.Count;

ADDING ITEMS TO A LISTBOX
To add several lines to a ListBox at run time, we can use a loop. For example, the following code will add
four lines to the ListBox lstData:

 For X := 1 to 4 do
 lstData.Items.Add('Item number: ' + IntToStr(X));

The values 1,2, 3 and 4 are added to the ListBox lstData.

RETRIEVING THE INFORMATION FROM A LISTBOX’S ITEM
We are also able to retrieve several values from a ListBox at run time. Let’s work through the following
guided activity to help you understand how to do this.

Looping with components7.4

UNIT

IT-Practical-LB-Gr10 INK06.indb 170 2019/09/26 09:56

171TERM 3 I CHAPTER 7 REPETITION I UNIT 7.4 Looping with components

Guided activity 7.1 Retrieving information from a ListBox

Add the � rst � ve integer values starting from 1 to a ListBox. Determine the sum of the values in the ListBox and display
the sum with a meaningful message in the memo box memDisplay.

7.1.1 Open the CalculateListBoxValuesSum_p project in the 07 – ListBoxSum folder. You should see the following
interface.

7.1.2 Create an OnClick event for the [Calculate Sum] button and do the following:

● Add code to store the � ve randomly generated integers from 0 to 99 in the lstData ListBox:

 For iCount := 1 to 5 do
 lstData.Items.Add(IntToStr(Random(100));

 The � rst randomly generated number is stored in ItemIndex position 0, the second randomly generated
number is stored in ItemIndex position 1,…, the � fth randomly generated number is stored in ItemIndex
position 4

 In general, the nth item in a ListBox is stored in ItemIndex position (n-1)

● Set iSum to zero

 iSum=0;

● Read an item from the lstData one at a time and add it to the sum:

for iCount := 0 to lstValues.Count – 1 do
 begin
 iNum:=StrToInt(lstValues.Items[iCount]);
 iSum:=iSum+iNum;
end;

NOTE:

● The loop counter iCount starts from 0 because the � rst element in the ListBox has the ItemIndex value 0.
● The maximum value is set to lstValue.count -1. lstValue.Count returns the number of items in the ListBox. So if there

are � ve items in the list, then lstValue.Count will return 5. Counting from 0 will give the � fth ItemIndex the value 4,
so 1 must be subtracted from lstValue.count to give the correct value for the last ItemIndex.

 iNum:=StrToInt(lstValues.Items[iCount]);

● An item is retrieved from the list at the speci� ed itemIndex and converted to integer and stored in variable iNum:

 iSum:=iSum+iNum; //iSum stores a running total

● The value of iNum is added to the value of iSum:

 memoDisplay.Lines.Clear;
 memDisplay.Lines.Add('The sum of the first 5 randomly generated

numbers is:'+IntToStr(iSum));

● This clears the memoDisplay memo box and displays the message ‘The sum of the 5 randomly generated numbers
is: ’ and the value of the sum.

IT-Practical-LB-Gr10 INK06.indb 171 2019/09/26 09:56

172 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided activity 7.1 Retrieving information from a ListBox continued

● The code for the OnClick event [Calculate Sum] button is:

procedure TForm1.btnCalculateSumClick(Sender: TObject);
var iCount,iSum,iNum:Integer;
begin
 for iCount := 1 to 5 do
 lstValues.Items.Add(IntToStr(Random(100)));
 iSum:=0;
 for iCount := 0 to lstValues.Count – 1 do
 begin
 iNum:=StrToInt(lstValues.Items[iCount]);
 iSum:=iSum+iNum;
 end;
 memDisplay.Lines.Clear;
 memDisplay.Lines.Add('The sum of the first 5 randomly generate numbers
 is :'+IntToStr(iSum));
end;

7.1.3 Save and run the project.

Activity 7.11

7.11.1 Open the Delphi project created in the previous activity.

a. Add a button to the form. Call the button btnAverage.

b. Add code to � nd the average of the numbers in the ListBox.

c. Add a button called btnHighest to the form.

d. Write the code for btnHighest to determine the highest number in the ListBox.

e. Add a button called btnLowest to the form.

f. Add the code to the button to � nd the lowest number in the list.

g. Display these values in the memo component on the form.

7.11.2 Open the Scoring_p project used for scoring a Diving competition that you made in Chapter 4 and expand it
as follows:

a. Add two more edit boxes to allow for � ve judges to score the competitors.

b. Change the code for the [Final Score] button to:

i. exclude the highest and the lowest numbers.

ii. � nd the average of the remaining three scores.

iii. display the � nal score.

IT-Practical-LB-Gr10 INK06.indb 172 2019/09/26 09:56

173TERM 3 I CHAPTER 7 REPETITION I UNIT 7.5 Using the Input box

Another function you can use to get data input is the InputBox function. The InputBox function displays
an input dialog box that a user can use to enter a string, double or integer when the program is executed.

The syntax of an InputBox is:

 InputBox(label,prompt string,default value)

The InputBox has three arguments. These are:
● Label: Refers to the caption of the Input Dialogue box.
● Prompt string: Refers to the text that prompts the user to enter

input in the edit box.
● Default value: Refers to the value that appears in the Edit box

when the Input Dialog box � rst appears.

Since the InputBox is a function, it must be assigned to a variable. Let’s look at an example of this.

Example 7.6

Execute the following code:

 sFlower:=InputBox('Flower','Enter a Flower Name','Roses');

When the above line of code is executed, the Input Dialog box will appear:

Prompt String

label

Default Value

Edit Box

The InputBox function always returns a string and hence for integer and real data the results must
be converted:
● iGrade:=StrToInt(InputBox(‘Grade’,’Enter Grade’,’10’));
● rNum:=StrToFloat(InputBox(‘Amount’,’Enter an Amount,’’));
● cResponse:=InputBox(‘Flight Seating’,’Enter your � ight no’,’’)[1];

The [1] following the closing round bracket indicates to Delphi to use only the � rst character of the
string returned by the InputBox.

Take note

The default value can be
blank and is shown as ‘’.

Using the Input box7.5

UNIT

IT-Practical-LB-Gr10 INK06.indb 173 2019/09/26 09:56

174 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.7 Using the lnput Box to read numbers

Prompt the user to enter 10 integer numbers. Determine and display the average of these numbers.

 …
 iSum:=0;
 For iCount:=1 to 10 do
 Begin
 iNum:=StrToInt(InputBox('Integer Number','Enter an integer

number',''));
 iSum:=iSum+iNum;
 end;
 rAverage:=iSum/10;
 ShowMessage('The average is: '+FloatToStrF(rAverage,ffFixed,8,2));
 …

Activity 7.12

7.12.1 Study the code segment and then answer the questions that follow:

Begin
 …
Line 1 iNum:=StrToInt(InputBox('Chips','How many do you Require?','2'));
Line 2 cResponse:=InputBox('Response','Will you be coming?','')[1];
Line 3 memDisplay.Lines.Add('Number of Chips: '+IntToStr(iNum));
Line 4 memDisplay.Lines.Add('Attending: '+cResponse);
 …
End;

a. In Line 1, identify the following in the InputBox function:

● label
● prompt string
● default value

b. Explain what the purpose of a default value is.

c. How does a blank default value appear in the default value argument?

d. Why is it necessary for the data conversion in Line 1? Explain your answer.

e. In Line 2:

● What is the purpose of [1] at the end of the line?
● Explain what will happen if the [1] is changed to [2].
● What type will the variable cResponse be declared as? Explain.

7.12.2 Open the UIFPayment_p project from the 07 – UIF Payments folder. Unemployment Insurance Fund (UIF)
contributions must be paid on a monthly basis to the UIF or to SARS.

UIF contributions are calculated at 2% of the employee’s wage of which the employee must pay 1% and the
employer must pay 1%.

a. Input the employee’s name, job description, wage amount and a character of ‘Y’ for permanent, and ‘N’ for
not permanent employee.

b. When the [CalculateUIF] button is clicked, display InputBoxes to obtain the inputs.

IT-Practical-LB-Gr10 INK06.indb 174 2019/09/26 09:56

175TERM 3 I CHAPTER 7 REPETITION I UNIT 7.5 Using the Input box

Activity 7.12 continued

c. Calculate the amount of UIF to be paid and display employee name, job description, permanent status,
amount UIF to be paid to SARS, amount UIF payable by employee and employer.

Activity 7.13

A teacher has 24 learners in her class. Create a project, Mark Statistics_p that will do the following:

7.13.1 Write code for the [TestTotal] button so that when it is clicked an InputBox appears, allowing the user to give the
maximum mark for the test.

7.13.2 Write code for the [Capture] button so that an InputBox appears when it is clicked, allowing the user to enter the
marks. This command must be placed in a loop to capture the marks of all the learners in the class. The marks
are displayed in a ListBox.

7.13.3 Add data validation to prevent the user from entering a number smaller than 0 or larger than the maximum of
the test.

7.13.4 Write code for the [Statistics] button to display the following information on the TMemo component:

a. number of learners who wrote the test

b. the average of the test, expressed as a percentage.

c. the highest mark, expressed as a percentage.

d. the lowest mark, expressed as a percentage.

e. the number of learners who achieved a mark above 80%

f. the number of learners who failed the test, given that below 40% is a fail mark.

IT-Practical-LB-Gr10 INK06.indb 175 2019/09/26 09:56

176 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

A REPEAT…UNTIL loop has its test at the END of a loop-block. That means one iteration is always

executed before the condition is tested. The REPEAT…UNTIL loop is called a post-conditional loop

because it checks whether it should continue running at the end of each loop.

It uses the following syntax:

REPEAT…UNTIL loop syntax
Repeat
 // one or more instruction
Until (condition=true);

Note:
● The REPEAT…UNTIL loop structure does not need a BEGIN ... END block.
● The REPEAT marks the beginning of the loop and UNTIL marks the end of the loop.
● The statements in the loop body are executed repeatedly until the condition (a Boolean expression)

evaluates to TRUE, that is, the loop body executes when the condition is FALSE and terminates
when the condition becomes TRUE.

● The condition is tested only after the loop body has been executed.
● The loop body is executed at least once.

iCount ← 0.5

iCount ← iCount + 0.5

Instruction to
be repeated

BeginStart

iCount > 9.5

End

False

True

I

T

C

Var
 iCount : Integer;
begin
 iCount := 0.5;
 Repeat

 // execute instruction(s)
 iCount := iCount + 0.5;
 Until (iCount > 9.5);
end;

Change In-/Decrement

Initialize Start Value

Test Condition

Figure 7.5: The REPEAT-UNTIL loop

CHANGES BROUGHT BY THE REPEAT-UNTIL LOOP
The new sequence of logical steps I-C-T (initialise, change and test) instead of I-T-C.
In the � owchart and code segment above:
● I : iCount:=0.5
● C : iCount:=iCount+0.5
● T : iCount>9.5

The initial value is set, then the change takes place and then the test.

REPEAT…UNTIL loop7.6

UNIT

IT-Practical-LB-Gr10 INK06.indb 176 2019/09/26 09:56

177TERM 3 I CHAPTER 7 REPETITION I UNIT 7.6 REPEAT…UNTIL loop

● Unlike the FOR-loop, the REPEAT-UNTIL loop’s control variable does not have to be an ordinal data
type, that is it can be Double, String, and so on. You can step through fractional parts of numbers or
any string data changes.

● The START should be � xed before entering a REPEAT-UNTIL loop, but the END value (part of the
condition) must be changed during the execution of the loop-block.

● An integer value can be changed by a value equal to or greater than one.

Example 7.8

Double a number until the number was larger than 1 000.

You could create the following REPEAT..UNTIL loop..

Doubling a number
iInput := 5;
Repeat
 iInput := iInput * 2;
Until iInput >= 1000;
ShowMessage(IntToStr(iInput));

Example 7.9 Compound interest calculator

Whenever you invest your money (principal) in the bank, you earn interest. This interest is added to your principal
amount and your investment grows. This is known as compounding. The compounded amount becomes the
principal amount on which the next interest will be calculated.

A client invests an amount (principal) at a � xed interest rate. The client has a target amount to reach with his or her
investment. Enter the principal amount to invest, the interest rate and the target value that the client wants to reach.
Calculate and display how many years it will take the client to reach his or her target amount. Also display the year
and the amount accumulated at the end of that year.

1. Open the CompoundInterest_p project located in the 07 – Compound Interest folder.

2. Create an OnClick event for the Calculate button.

IT-Practical-LB-Gr10 INK06.indb 177 2019/09/26 09:56

178 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.9 Compound interest calculator continued

3. In the [Calculate] button event handler, declare the following seven local variables:

Variable Purpose

rInvestment Stores the initial investment from the edtInvestment edit box

rInterest Stores the interest percentage from the edtInterest edit box

rTarget Stores the target value from the edtTarget edit box

iYear Counter variable to store the number of years

rValue Initialised to the rInvestment amount

rGrowth Stores the interest amount calculated for a year

sValue Stores the compound value as a string for display

 var
 iYear : Integer;
 rInvestment, rTarget,rInterest, rGrowth, rValue : Real;
 sValue : String;
 .

4. Assign the values entered into the Investment, Interest and Target value textboxes to the appropriate variables.

 rInvestment := StrToFloat(edtInvestment.Text);
 rInterest := StrToFloat(edtInterest.Text) / 100;

// interest rate divided by 100
 rTarget := StrToInt(edtTarget.Text);

5. Set value of iYear to 0 and the value of rValue to the value of rInvestment. Your variable initialisation and
assignment should now look as follows:

 iYear := 0;
 rValue := rInvestment;

6. Clear the values of the ListBox using the Items.Clear method. Your variable initialisation and assignment should
now look as follows:

 lstValues.Items.Clear;

7. Create a REPEAT…UNTIL loop that will repeat until rValue is larger than or equal to iTarget.

 repeat // repeat body of loop
 rGrowth := rValue * rInterest; // calculates the interest earned
 rValue := rValue + rGrowth; // The interest is added to rValue
 // convert the compound amount to a string in currency format
 sValue := FloatToStrF(rValue,ffCurrency,10,2);
 lstValues.Items.Add(sValue); // displays the converted string in
 iYear := iYear + 1; // the ListBox
 until rValue >= rTarget; // increments the years by 1

// until rValue>=rTarget evaluates
// to true

8. Display the number of years it will take the client to reach his or her target amount.

 lblResult.Caption := IntToStr(iYear);

IT-Practical-LB-Gr10 INK06.indb 178 2019/09/26 09:56

179TERM 3 I CHAPTER 7 REPETITION I UNIT 7.6 REPEAT…UNTIL loop

Example 7.9 Compound interest calculator continued

9. Save and run the project.

Let’s now apply the conditional REPEAT-UNTIL loop structure to a more mathematical challenge.

Example 7.10

The Lowest Common Multiple (LCM) or Least Common Divisor (as some call it) can demonstrate the use of a
conditional REPEAT-UNTIL loop. In mathematics the LCM is the smallest positive number that is a multiple of
both numbers. For example: Take the two numbers 6 and 15. Multiple values for each respectively would be
de� ned as:

6: 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, etc

15: 30, 45, 60, 75, 90, etc

Matching multiples between 6 and 15 are coloured in red and bold. The smallest or lowest matching multiple is
30. The LCM of 6 and 15 is 30.

How can we translate this into a program with Delphi code to calculate the LCM?

If we step through the multiples of one number (for example, 0, 15, 30, 45, etc) and at the same time test whether
a remainder is left if we divide with the second number, that is, if the division with the second number delivers a
remainder of 0 (zero), then we know this number is a matching multiple of both!

An algorithm in pseudo code could look as follows:

Lowest Common Multiple
BEGIN

 INPUT Num1 // set Num1 15 or 6

 INPUT Num2 // set Num2 6 or 15

 LCMnum ← 0 // start from zero

 REPEAT

 LCMnum ← LCMnum + Num1 // step through: 15, 30, 45, etc.

 UNTIL ((LCMnum MOD Num2) = 0) // or 6, 12, 18, 24, etc.

 OUTPUT LCMnum is the calculated LCM

END

IT-Practical-LB-Gr10 INK06.indb 179 2019/09/26 09:56

180 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.10 continued

Translating this algorithm into code we would get the following possible result:

begin
 1 iNum1 := StrToInt(edtNum1.Text);
 2 iNum2 := StrToInt(edtNum2.Text);
 3 iLCM := 0;
 Repeat
 4 iLCM := iLCM + iNum1
 5 Until (iLCM mod iNum2) = 0;
 6 lblResult.Caption := 'The LCM between ' + edtNum1.Text + ' and '
 + edtNum2.Text + ' is: ' + IntToStr(iLCM);
end;

Tracing the steps line by line in a trace table will make it even clearer.

LINE # iNUM1 iNUM2 iLCM (iLCM MOD iNUM2) = 0 ? COMMENT

1, 2, 3 15 6 0
4 15
5 (15 MOD 6) → 3 False Keep iterating
4 30
5 (30 MOD 6) → 0 True
6 Loop terminated: LCM ← 30

Did you know

You can use this program to help you calculate the ‘Common Denominator’ even with very large numbers!

Activity 7.14

Update the compound interest calculator you created in the example on page 179 so that it can do the following:

7.14.1 Ask the user to enter the number of years to invest.

7.14.2 Calculate the value of the investment after the number of years.

7.14.3 Ask the user to enter an amount to invest each year. This value must be added to the total investment at the end
of each year after the interest has already been added.

7.14.4 Display the total money invested as well as the total value of the investment at the end of the number of years.

Activity 7.15

Write a new Delphi application that will display only even
random numbers between 50 and 200, by following the
guidelines below:

7.15.1 Allow the user to input the number of even
numbers to be displayed when [How Many] button
is clicked.

7.15.2 Use a REPEAT-UNTIL loop to enter as many even
random numbers as speci� ed by the user. Display
the numbers in the Memo component.

7.15.3 Write code for the [Smallest Number] button to display the smallest number in a ShowMessage dialog.

IT-Practical-LB-Gr10 INK06.indb 180 2019/09/26 09:56

181TERM 3 I CHAPTER 7 REPETITION I UNIT 7.6 REPEAT…UNTIL loop

Activity 7.16 Practise your multiplication

You want to create a Delphi application to help your younger brother practise his Math. You want to start with
multiplication only. He is young, so you decide that the largest product in his times table should be 50.

Study the interface shown alongside.

Note: When the [Times Table] button is clicked an
Inputbox asks the user which table must be
displayed.

7.16.1 Write the code to display the output
as shown.

7.16.2 Use a REPEAT-UNTIL loop that will stop
when the product exceeds 50.

Extension:

7.16.3 Add one more button and an InputBox to
allow the user to input the highest value
for the product.

IT-Practical-LB-Gr10 INK06.indb 181 2019/09/26 09:56

182 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

The WHILE loop does not necessarily run a speci� c number of times. Instead, the WHILE loop is a
conditional loop (like the REPEAT loop), but it places its condition � rst before executing the looping block.
Only if the condition is satis� ed, will the loop body execute. This means that the loop body executes while
the condition is TRUE and exits the loop when the condition is FALSE.

The WHILE loop is called a pre-conditional loop because the condition that determines whether it should
run is found at the start of the loop. If the condition is TRUE, the loop activates and continues to repeat
until the condition is no longer TRUE. If the condition is not met initially, the entire loop is skipped.

The syntax for the while-loop is:

WHILE..DO loop syntax
WHILE (condition = True) do
BEGIN
 // 1 or more instruction
END // Test Condition again

Here are all the steps explicitly written in coding:

Var
 iCount : Integer;
begin
 iCount := 0.5;
 while (iCount <= 9.5) do
 begin
 // execute instruction(s)
 iCount := iCount + 0.5;
 end;
end; Change In-/Decrement

Initialize Start Value

Test Condition

iCount ← 0.5

iCount ← iCount + 0.5

Instruction to
be repeated

BeginStart

iCount > 9.5

End

FalseTrue

I

C

T

Figure 7.6: Coding and � owchart for a WHILE loop

Note:
● The loop starts with the keyword WHILE followed by the condition and then the keyword DO.
● DO is not followed by a semi-colon.
● The body of the loop appears within a BEGIN END block.
● The loop executes while the condition is TRUE and exits the loop once the condition evaluates to

FALSE.
● The loop condition is tested at the beginning of the loop. If the loop condition evaluates to FALSE

upon entering the loop then the loop is not executed at all.

While…do loop7.7

UNIT

IT-Practical-LB-Gr10 INK06.indb 182 2019/09/26 09:56

183TERM 3 I CHAPTER 7 REPETITION I UNIT 7.7 While…do loop

PROGRAMMING ADVANTAGES USING A WHILE LOOP
The sequence of logical steps I-T-C are the same as in a FOR loop. That is:
● I: iCount:=0.5
● T: iCount<=9.5
● C: iCount:=iCount+0.5 // if there is no change, then we would have an in� nite loop

The hidden loop-counter test (from the FOR loop) is replaced by a Boolean expression. Any expression
that resolves into a Boolean result is acceptable.

The loop control variable (if used as a counter) can be about any data type e.g.: Double, String. For Double
the change can include fractional parts of numbers. Integers can be increased or decreased by any
amount.

The start should be � xed before entering a WHILE loop, but the end value (part of the condition) must be

changed during the execution of the loop-block.

Example 7.11

Double a number until the number was larger than 1 000.

To code the same example using the WHILE..DO loop, use the following code snippet:

While..Do loop example
iValue := StrToInt(InputBox('Integer Value','Enter an integer value',''));
While iValue <= 1000 do
begin
 iValue := iValue * 2;
 ShowMessage(IntToStr(iValue));
end;

Note:

● The While…Do loop in this example will continue multiplying iValue by 2, until the result is larger than 1000.
● When the input number is 5, the loop will run 8 times.
● If the input number is 500, the loop will only run twice.
● If the input number is 5000, the loop will not run.

Example 7.12

Determine how many multiples of a number iNum must be added together to give a sum just greater than 100.
The value of iNum must be randomly generated in the range 5 to 10. For example, if the random number 7 was
generated, then the multiples of 7 are 7, 14, 21, 28, …

Begin
…
1 iSum:=0;
2 iCount:=0;
3 Randomize;
4 iNum ;= random(6) + 5
5 iMultiple:=iNum;
6 While iSum<=100 do
7 Begin
8 iCount:=iCount+1;

IT-Practical-LB-Gr10 INK06.indb 183 2019/09/26 09:56

184 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.12 continued

9 iSum:=iSum+iMultiple;
10 iMultiple:=iMultiple+iNum;
11 End;
12 memDisplay(IntToStr(iCount),' multiples of ',IntToStr(iNum),' must be

added together');
….
End;

Note:

● Line 1: The sum variable iSum is initialised to 0. iSum :=0 refers to the I in the ITC principle
● Line 2: The counter iCount to count the number of multiples that must be added is set to 0
● Line 3: The random generator is activated
● Line 4: A random number in the range 5 to 10 is generated
● Line 5: The initial value of iNum is assigned to iMultiple
● Line 6: The condition iSum<=100 is tested. This refers to the T in the ITC principle. If the condition evaluates to

TRUE, then the body of the loop will be executed. If the condition evaluates to FALSE, then the loop is exited and
the statement in line 12 is executed

● Line7: Marks the beginning of the loop
● Line 8: The counter iCount is incremented by 1
● Line 9:The iMultiple value is added to iSum. iSum:=iSum+iMultiple; refers to the C in the ITC principle
● Line 10: The next multiple of iNum is generated in iMultiple
● Line 11: Makes the end of the loop and takes us back up to Line 6, where the condition is tested again.

Activity 7.17

Create a project called WhileLoopCounter_p in the folder 07 – While Loop Counter and create the user interface as
shown below in Design view and do the following:

7.17.1 Create an OnClick event for the [Loop] button to read the number of times the loop must execute from the Edit
component and store the value in iTimes variable.

7.17.2 Use a WHILE loop to execute the loop iTimes.

7.17.3 Display the value of the loop counter each time the loop is executed in a Message Box.

7.17.4 Save and run the project.

IT-Practical-LB-Gr10 INK06.indb 184 2019/09/26 09:56

185TERM 3 I CHAPTER 7 REPETITION I UNIT 7.7 While…do loop

Guided activity 7.2 Dice Roller

You need to create an application that will calculate how many times you need to roll two die before you roll a 12.

7.2.1 Open the DiceRoller_p project located in the 07 – Dice Roller folder.

7.2.2 You should see the following code in the OnClick event for the [Roll The Dice] button.

Existing code
procedure TfrmDiceRoller.btnRollTheDiceClick(Sender: TObject);
var
 iCount, iDice1, iDice2, iTotal : Integer;
begin
 Randomize;
 lstRolls.Items.Clear;
 iCount := 1;
 iDice1 := Random(6) + 1;
 iDice2 := Random(6) + 1;
 iTotal := iDice1+iDice2; //the sum of the values on the dice are added
 lstRolls.Items.Add(IntToStr(iTotal));
 //Start while loop

 lstRolls.Items.Add(IntToStr(iTotal));
 iCount := iCount + 1;
 //End while loop

 lblRolls.Caption := 'Number of rolls: ' + IntToStr(iCount);
end;

In the available space, create a WHILE loop that will repeatedly roll two dice (returning a random value between
1 and 6 for each dice) until the sum of the two dice is equal to 12. With each repetition, the value of iCount
increases by 1. Once the loop stops, this value will be written to the label at the bottom of the screen.

IT-Practical-LB-Gr10 INK06.indb 185 2019/09/26 09:56

186 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided activity 7.2 Dice Roller continued

To solve this problem, you can create the following while-loop.

Dice Roller while-loop
while iTotal <> 12 do
begin
 iDice1 := Random(6) + 1;
 iDice2 := Random(6) + 1;
 iTotal := iDice1 + iDice2;
 lstRolls.Items.Add(IntToStr(iTotal));
 iCount := iCount + 1;
end;

● Before the WHILE loop, iDice1 and iDice2 are ‘rolled’ out of the loop and the total of the dices is stored in iTotal
● The loop will execute as long as iTotal is not equal to 12
● Once inside the loop, iDice1 and iDice2 are ‘rolled’ again
● The total of both dices are stored iTotal
● iCount is incremented by 1 to keep track of the number of dice rolls
● The loop will repeat as long as the iTotal is not equal to 12.

7.2.3 Save and run the project. By clicking the [Roll The Dice] button a few times, you will see that the WHILE loop
repeats a different number of times with each click. This is because random numbers are generated, it takes a
different number of rolls for the total to be equal to 12.

7.2.4 Change the code in the Onclick event handler to achieve the same results using a REPEAT…UNTIL loop.

IT-Practical-LB-Gr10 INK06.indb 186 2019/09/26 09:57

187TERM 3 I CHAPTER 7 REPETITION I UNIT 7.7 While…do loop

CHOOSING BETWEEN A FOR LOOP AND A WHILE LOOP
The FOR loop can be replaced with an equivalent WHILE loop, but the opposite is not true.

Example 7.13

Two values are read from spin edits sedLower and sedUpper. Determine the sum of the values from sedLower to
sedUpper.

The code for a FOR loop:
iSum:=0;
for iCount:=sedLower.Value to sedUpper.Value do
 iSum:=iSum+iCount;

The equivalent code of the FOR loop in a WHILE loop

iSum:=0;
iCount:=sedLower.Value;
While iCount<=sedUpper.Value do
begin
 iSum:=iSum+iCount;
 iCount:=iCount+1;
end;

If a loop is counter-driven, and if we know the number of times the loop should execute, then a FOR-loop
is appropriate, however, if the loop is not controlled by a counter and you do not know beforehand how
many times the loop will repeat, you should rather use a WHILE-loop.

THE DIFFERENCE BETWEEN THE WHILE-LOOP AND THE REPEAT-LOOP
To understand the difference between a repeat-loop and while-loop, compare the following two
code snippets.

REPEAT-LOOP WHILE-LOOP

iInput := 1500;
repeat
 iInput := iInput * 2;
until iInput >= 1000;
ShowMessage(IntToStr(iInput));

iInput := 1500;
while iInput < 1000 do
 iInput := iInput * 2;

ShowMessage(IntToStr(iInput));

It is an I-C-T loop

Post-test loop – condition tested at the end of the loop

The loop executes while the condition is false and exits
the loop when the condition is false

The loop executes at least once

It is an I-T-C loop

Pre-test loop – condition tested at the beginning of the
loop

The loop executes while the condition is true and exits the
loop when the condition is false

The loop may not execute at all

IT-Practical-LB-Gr10 INK06.indb 187 2019/09/26 09:57

188 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 7.18

Prime numbers are numbers that only have two factors: 1 and the number itself. Name the project PrimeNumber_p.

Write a program that will display the � rst 20 prime numbers.

Hint: In activity 7.9 you wrote an algorithm to identify the factors of a number. If a number has no factors other than
itself and 1, it is a prime number.

Activity 7.19

Continue working in the program you created in Activity 7.16 on page 181.

Your brother needs to practise his multiplication. Change your program as follows:

7.19.1 Add the [Multiplication] button.

7.19.2 Write code for this button to:

a. randomly select two numbers between 0 to 10 to multiply.

b. generate the correct answer to this sum by multiplying the two random numbers.

c. display the question in labels as shown In the Image on the below.

d. display an InputBox to allow the user to type in the
correct answer as shown in the image alongside.

e. compare the answer given by the user to the answer
generated by the program.

7.19.3 If the answer is correct, add 1 to the score. The loop stops
executing when the score is 10.

7.19.4 Count the number of tries he takes to get 10 correct
answers.

7.19.5 Display the percentage correct answers.

Activity 7.20 Build a pyramid

An imaginary Pharaoh wants to build a solid pyramid. He needs to order the blocks to build the pyramid from a stone
cutter who will transport the blocks.

Write an app that will calculate and display the number of blocks the Pharaoh needs to order.

Understand the problem:
● A pyramid is built up from a

square base.
● This is a solid pyramid; therefore

the area of the square has to be
� lled with blocks.

● Each level has fewer blocks than
the previous level.

● The top level consists of a
limited number of blocks.

● Which values do you need to get
from the user?

IT-Practical-LB-Gr10 INK06.indb 188 2019/09/26 09:57

189TERM 3 I CHAPTER 7 REPETITION I UNIT 7.7 While…do loop

Activity 7.20 Build a pyramid continued

7.20.1 Write the algorithm to calculate the number of blocks needed.

7.20.2 Create a trace table using the following data to check your algorithm:

a. the base takes 10 blocks per side

b. each level reduces by two blocks per side

c. the top level has one block.

7.20.3 According to your trace table, how many level should your pyramid have?

7.20.4 Create a program to calculate the number of blocks needed to build the pyramid.

Display the following:

a. the number of blocks needed to build the pyramid

b. the number of level in the pyramid.

Activity 7.21 Healthy meals

In Chapter 4 you had to correct the output of a program to order healthy meals from the tuck shop.

Open the PreOrder_p project used in Activity 4.7.3 and improve the program so that it only calculates the order once
the user indicates that the order is complete.

Improve the program by following the guidelines below:

7.21.1 Change the interface so that it looks similar
to the one shown alongside.

Note: The menu is placed in a groupbox.

The spin edits are removed and replaced by
a button.

7.21.2 Add code to btnOrder to use an InputBox for
the user to enter his order. Once an item has
been ordered, increase the number of items
ordered and add to the total amount owed. A
message should appear to ask if the order is
complete. If the answer is ‘No’, another
InputBox should appear, but if the answer is
‘Yes’ btnCalculate should be enabled, and
the loop stops.

Hint: Create a Boolean variable bStop and set the value to false.

The while do loop is then:

 While bStop = false do
 use bStop := True to stop the loop.

7.21.3 Change the code to btnCalculate to use the values saved in the global variables to calculate the total amount of
items ordered as well as the total amount owed. Display these values in the labels on the form.

7.21.4 Run your program.

IT-Practical-LB-Gr10 INK06.indb 189 2019/09/26 09:57

190 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

THE GREATEST COMMON DIVISOR
So far you you have already worked with some interesting mathematical challenges. The fast iteration
through loops speed up solving complex mathematical calculations. Think back to the two mathematical
calculation examples dealt with:
● testing for a prime number
● calculating the Lowest Common Multiple (LCM) of two numbers.

In this unit we will look at another example that is a bit more complicated.

Example 7.13

The Greatest Common Divisor (GCD) is a mathematical challenge and well solved by applying the Euclidean
Algorithm. It refers to the largest natural number that divides into two or more non-zero integers without a
remainder. We will only apply it to two numbers. For example:

● the GCD of 8 and 12 is 4. The number 2 would also be a divisor, but it is not the greatest common divisor.
● the GCD of 9 and 18 is 9.
● the GCD of 24 and 18 is 6.

A good reverse check would be to write down multiples of your answer. The sequence of numbers being created
should contain the two original numbers for the GCD-testing. Take the last example with a result of 6. The multiples
of 6 are: 6, 12, 18, 24, 30, 36, and so on. Here you see the original GCD-testing numbers printed in bold.

So, how can we develop an algorithm and/or a small project to calculate the GCD of two numbers?

Let’s begin by demonstrating one interpretation we can use for our algorithm to be developed.

Assume we have the two numbers 135 and 36. Applying the Euclidian Algorithm we would do the following:

Num1 MOD Num2 = Remain

Num1 MOD Num2 = Remain

Num1 MOD Num2 = 0

Num2 (= GCD)

135 MOD 36 = 27

36 MOD 27 = 9

27 MOD 9 = 0

9 (= GCD)

Num1 MOD Num2 = Remain

Num1 MOD Num2 = Remain

1

2 3

Find GCD

BEGIN
 INPUT Num1
 INPUT Num2
 WHILE (Num1 MOD Num2) > 0 DO
 Remain ← Num1 MOD Num2 //
 Num1 ← Num2 //
 Num2 ← Remain //
 END WHILE
 OUTPUT Num2
END

1
2

3

Num1 MOD Num2 = Remain

Num1 MOD Num2 = 0

1

2 3

Expressing it in more general terms as algorithm:
First iteration:

Second iteration:

Apply Loop Structures7.8

UNIT

IT-Practical-LB-Gr10 INK06.indb 190 2019/09/26 09:57

191TERM 3 I CHAPTER 7 REPETITION I UNIT 7.8 Apply Loop Structures

Example 7.13 continued

The iteration is based on the condition that the remainder of the two numbers Num1 and Num2 is larger than zero
(that is not equal to zero). As part of each iteration:

● the remainder (Remain) is calculated from Num1 MOD Num2
● Num1 is overwritten by Num2 (moved to the front – compared to diagram)
● Num2 is overwritten by Remain (moved to the front – compared to diagram)

The loop terminates if the remainder is equal to zero.

IT-Practical-LB-Gr10 INK06.indb 191 2019/09/26 09:57

192 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

DECLARING LOCAL AND GLOBAL VARIABLES
In Chapter 4 you learnt about the declaration and use of local and global variables. If you are unsure of this
work, refer back to page 78 to refresh your memory.

FORM EVENTS
You also learnt about the OnCreate event in Chapter 4. The OnCreate event is the � rst event that is
activated when when the application is opened. The OnCreate event is only executed once. This makes
it the perfect event for initialising variables. Another option to initialise variables using the events that
activate when your program is opened the � rst time is to use the OnShow event.

EVENT DESCRIPTION

OnShow In the sequence of execution, the OnShow event activates after the OnCreate event.
Beyond this, it will be activated each time the form is made visible. This is useful if you
are creating an application with multiple forms.

To add create an OnShow event:
● select the form component in Design View
● in the Object Inspector, click on the Events tab
● � nd the OnShow event
● double click the space to the right of OnShow
● the OnShow event handler will display:

procedure TForm1.FormShow(Sender: TObject);
begin

end;

● For example, you can initialise the variables that you want to use.

procedure TForm1.FormShow (Sender: TObject);
begin
 iCounter := 0;
 sName := '';
 bIsReady := False;
end;

No matter which technique you use, make sure that you initialise all variables before using them in
calculations!

Activity 7.22

Open the Consolidation Activity no. 17, Numbers_p, that you worked on in Chapter 4. This activity required you to play
with numbers. The variable iAnswer was declared many times.

7.22.1 Improve this program by removing unnecessary repetitions and declaring some global variables.

7.22.2 Initialise all variables that will hold the results of a calculation.

Remember!

If you want variables to be
accessible from any event,
they must be declared
globally.

Initialising variables using the onshow event7.9

UNIT

IT-Practical-LB-Gr10 INK06.indb 192 2019/09/26 09:57

193TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Timers

Up to now, you have been working with loops created in your code. These loops
try to complete the statements inside the loop as quickly as possible. This is great
if you want your program to � nish as quickly as possible, but it is not good if you,
for example, are using the loop to control the movement of an object in a game.
When you want to control movement, you need a loop that will always run at
exactly the same speed.

Delphi allows you to create a loop like this using the TTimer component. To add
a TTimer component on a form select TTimer from System in the Tool Palette and
place on the form.

The timer component is a non-visual component. You can see the timer
component as an icon in design view. When the program executes, the timer
component is not visible.

PROPERTIES OF THE TIMER COMPONENT:
The Timer component has the following properties:
● Name: allows you to change the name of the timer component. The pre� x

tmr is used before the name of the timer.
● Enabled: This property can be set to either TRUE or FALSE. If the Enabled

property is set to TRUE, it allows the timer to run and will trigger an event. If
the Enabled property is set to FALSE, it stops the timer, that is, its OnTimer

event handler does not trigger an event.
● Interval: An integer value that tells the Timer’s event handler when to trigger

in milliseconds between two events. For example, an interval of 5 000 tells
the Timer’s event handler to trigger every 5 seconds. An interval of 1 000
tells the Timer’s event handler to trigger every 1 second and so on.

The OnTimer event is the only event that the Timer component responds to. You
can then use the OnTimer event to create code that runs when the timer triggers.
Since the code inside the OnTimer event will repeat every few milliseconds, this
works in the same way as a loop. The only difference is that you can control how
quickly the loop repeats.

Just like with loops, the code in the timer’s event will continue running until you
tell it to stop. This can be done by disabling the timer component.

To see how a timer is used, work through the following examples and guided
activities.

Remember!

It is useful to control visual
aspects of the GUI.

Timers7.10

UNIT

IT-Practical-LB-Gr10 INK06.indb 193 2019/09/26 09:57

194 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.14 Bouncy ball

For this project, you will create a simple animated game in which a ball bounces around the screen until you click on
it. To do this:

1. Create a new BouncyBall_p project and save it in a folder called 07 – Bouncy Ball.

2. Add a TCircle component from the Shapes list to your user interface.

3. Change the height of the form to 500 and the width to 650.

4. Change the height and width of the circle to 50. Your UI should now look as follows:

5. Create two global integer variables iVerticalDirection and iHorizontalDirection.

6. Assign a value of 5 to both your global variables in the variable declaration.

7. Add a TTimer component from the System list to
your form.

8. From the Events tab of your timer, create an
OnTimer event.

9. Set the Interval property of the timer to 5. This
event will now activate every 5 milliseconds.

10. Add the following line of code to your timer event.

Ball drop code
shpBall.Top := shpBall.Top + iVerticalDirection;

The vertical position of the ball is determined by the shape’s Top property. This property tells your shape how
many pixels there should be from the top of the form to the top of the shape. By systematically increasing or
decreasing this value, you can cause the shape to move down or up. Since both iVerticalDirection is equal to 1,
the code above will increase the ball’s Top property by 1 every 5 milliseconds. This will move the ball 1 pixel
away from the top of the window every 5 milliseconds.

11. Save and test your application. The moment the program opens, you should see your ball starting to fall!

Did you know

Users cannot see your timer
components during runtime,
so they can be placed
anywhere on the form.

IT-Practical-LB-Gr10 INK06.indb 194 2019/09/26 09:57

195TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Timers

Example 7.14 Bouncy ball continued

12. To cause your ball to bounce, add the following code to your event.

Ball bounce condition
if shpBall.Top >= 450 then
 iVerticalDirection := iVerticalDirection * -1;

Remember, the ball has a height of 50 pixels while the form has a height of 500 pixels. This means that, when
the ball’s Top property is at 450 pixels, the bottom of the ball is touching the bottom of the form, since
450 + 50 = 500. The moment this happens, the conditional statement becomes true and the vertical direction
changes from positive to negative. This, in turn, causes the ball to start moving upwards.

Unfortunately, you will now see the ball move up until it is out of the screen. To � x this:

13. Update the condition in your timer event so that it change vertical direction whenever the Top property is larger
than 450 or smaller than 0. With this change, the ball’s direction will become positive again once it reaches the
top of the screen.

14. Save and test your application. The ball should now bounce up and down in your application!

Awesome! You have just animated a moving ball using a timer event. In the next guided activity, you will
move the ball sideways and stop the timer when you click on the ball.

Guided activity 7.3 Bouncing ball improvements

In the previous example, you created a bouncing ball game that caused a ball to bounce up and down in window. In this
guided activity, you need to complete the game by completing the following tasks:

7.3.1 Inside the OnTimer event, increase the ball’s Left property by the
value of iHorizontalMovement. This changes the number of pixels
from the left of the form to the left of the shape.

7.3.2 If the ball’s Left property is larger than 600 or smaller than 0, multiply
iHorizontalMovement by -1. This will change the direction of the ball’s
horizontal movement.

7.3.3 Create a label with a large font in the middle of the form.

7.3.4 Create a global iTime variable and set its value equal to 0.

7.3.5 Increase the value of iTime by 1 in the OnTimer event and display its value in the label.

7.3.6 Create an OnClick event for the ball shape.

7.3.7 Inside the OnClick event, change the timer’s Enabled
property to False if it is True, and to True if it is False. This
allows you to start and stop the ball game by clicking on
the ball.

7.3.8 Inside the OnClick event, reset the value of iTime to 0.

7.3.9 Save and test your application.

7.3.10 You can increase the ball speed by increasing the starting
values of iHorizontalDirection and iVerticalDirection.

Once your improvements are done, you will have created your � rst, fully functional game. Well done! If you
are interested in creating your own games, the next two years will teach you many techniques that will help
you to create new games.

Did you know

Changing the starting
values to 10 makes the
game very dif� cult!

IT-Practical-LB-Gr10 INK06.indb 195 2019/09/26 09:57

196 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

JUMPING DINO ALGORITHM
If you use Google Chrome to browse the internet, you may be familiar with the following screen that is
shown when you try to access the internet without an internet connection.

What you may not know, is that this is actually a hidden game that you can activate by pressing the up
arrow on your keyboard. This activates the Jumping Dinosaur game in which you are in charge of a
dinosaur that needs to jump over (or duck under) oncoming obstacles.

Keeping the bouncing ball game you previously created in mind, develop an algorithm for each of
the following:
1. Repeatedly moving the same cactus from the right side of the screen to the left.
2. Jumping and landing with a dinosaur.

When creating the pseudocode, think carefully about the following questions:
● How will you move the cactus from the right to the left?
● How will the cactus know when it reaches the left of the screen?
● What will you do once the cactus reaches the left of the screen?
● How will you move the dinosaur up when it jumps?
● How will you stop the dinosaur from jumping too high?
● How will you move the dinosaur back to the ground?
● How will the dinosaur know when it has reached the ground?
● What will happen once the dinosaur reaches the ground?

IT-Practical-LB-Gr10 INK06.indb 196 2019/09/26 09:57

197TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Timers

Example 7.15 Jumping dino

To create the Jumping Dino game:

1. Open the project saved in the ‘07 – Jumping Dino’ folder. You should see the following user interface (including
a timer that is not shown):

In this user interface, the timer has an interval of 10, while the height and width of the items are given in the
table below.

COMPONENT HEIGHT WIDTH

Form 200 640

Dinosaur 100 88

Cactus 60 46

The following variables have already been declared.

VARIABLE VALUE SCOPE

iJumpSpeed 0 Global

iSpeed 6 Local (OnTimer)

iDropSpeed 1 Local (OnTimer)

2. In the OnTimer event, decrease the Left property of the cactus by the value of iSpeed.

3. Create a conditional statement that sets the Left property of the cactus to 640 once it is smaller than –48.
You can do this using the following code.

Cactus movement
imgCactus.Left := imgCactus.Left – iSpeed;
if imgCactus.Left <= -48 then
 imgCactus.Left := 640;

This code allows the same cactus to repeatedly appear from the right of the window, by moving your cactus to
the right of the window once it disappears from the left of the window.

4. Save and test your application. You should now see the cactus moving across the screen.

IT-Practical-LB-Gr10 INK06.indb 197 2019/09/26 09:57

198 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 7.15 Jumping dino continued

5. In the OnTimer event, decrease the Top property of the dinosaur by the value of iJumpSpeed.

Dino jump code
imgDino.Top := imgDino.Top – iJumpSpeed;

Remember, iJumpSpeed starts with a value of 0. As long as the value is 0, this code will not change the
dinosaur’s position. However, as soon as iJumpSpeed has a positive value, this line will cause the dinosaur to
move upwards. If iJumpSpeed has a negative value, this will cause the dinosaur to drop down.

6. In the OnClick event for the [Jump] button, set the value of iJumpSpeed to 14. Since this value is negative, it will
cause your dinosaur to jump whenever you click on the [Jump] button.

7. In the OnTimer event, create a conditional statement that checks if the dinosaur is in the air. The dinosaur is in
the air whenever its Top position is smaller than 100.

8. Inside the conditional statement, decrease the value of iJumpSpeed by iDropSpeed. This will cause your
dinosaur to move upwards more slowly (and eventually fall downwards) each time the timer activates.

9. Using an ELSE-statement, set the dinosaur’s Top position to 100 and iJumpSpeed to 0 when the dinosaur is not
in the air. The full conditional statement is given below.

Conditional statement
if imgDino.Top > 100 then
 iJumpSpeed := iJumpSpeed + iDropSpeed
else
begin
 imgDino.Top := 100;
 iJumpSpeed := 0;
end;

In real life, whenever you jump, you start by moving upwards at a high speed. However, for every second you are
in the air, you decelerate. This deceleration eventually causes you to fall back down to the ground. Once you
land on the ground, you stop decelerating again. The code from the Jumping Dino game works in the same way.

Every time the timer activates, it checks if the dinosaur is in the air. If the dinosaur is in the air, it decreases the
dinosaur’s jumping speed by iDropSpeed until the dinosaur starts falling. Once the dinosaur hits the ground (that
is, once the Top property is smaller than 100), the jumpspeed is reset to 0.

10. Save and test your application. The dinosaur should now jump whenever you press the [Jump] button.

Awesome! In this application you combined real-life physics with loops to create an interactive game.
To do this, you had to use all the techniques you have learned so far.

IT-Practical-LB-Gr10 INK06.indb 198 2019/09/26 09:57

199TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Timers

If you want to continue improving your game, you could:
● Create a second timer to keep track of the score. This timer can increase the score by 100 points

every second until the dinosaur fails to jump over the obstacle.
● Create a � ying bird obstacle or a second cactus obstacle.
● Gradually increasing the speed of the cactus. To do this, you can increase the speed of the cactus

by a few percent every time it reaches the left side of the screen.
● Randomising the timing of the cactus. This can be done by using a random number to start the

cactus closer or further away from the dinosaur.
● Detecting when the cactus strikes the dinosaur. This can be done by comparing the Top and Left

positions of both the cactus and the dinosaur.

All of these improvements are possible using the techniques you have learned so far!

Activity 7.23

7.23.1 Using the Dino Jump game:

a. Implement any of the two suggested improvements to the game.

b. Create two buttons that allow you to increase or decrease the speed of the game by changing the timer’s
Interval property.

7.23.2 Create a timer application. The timer should display the number of minutes and seconds since the [timer] button
was clicked.

IT-Practical-LB-Gr10 INK06.indb 199 2019/09/26 09:57

200 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

REPETITION – LOOPS

Rules for LOOPS
● Know or calculate the start value before starting the loop
● Produce a CHANGE in the loop to impact on your condition
● Ensure that your CONDITION terminates your loop

FOR Loop

(loop with ordinal values I-T-C)
WHILE loop

(Pre-condition I-T-C)
REPEAT … UNTIL loop

(Post condition I-C-T)

iCount ← 0.5

Instruction to
be repeated

BeginStart

iCount >9.5

End

False

True

I

T

CiCount ← iCount + 0.5iCount ← iCount + 0.5

iCount ← 0.5

Instruction to
be repeated

BeginStart

False

True

iCount > 9.5

End

iCount <= 10

iCount ← 1

Instruction to
be repeated

BeginStart

FalseTrue

iCount ← iCount + 1

End

STRUCTURES WITH …
ListBox, ComboBox, RadioGroup box components (LCR) with important properties & methods listed

PROPERTY / METHOD LISTBOX COMBO BOX RADIO GROUP BOX

ItemIndex   

Columns   

Items   

Sorted   

TabWidth   

Items.Add()   

IndexOf()   

SaveToFile()   

LoadFromFile()   

Main Purpose of respective LCR-components
● ListBox mainly used for listing tabular data
● Combo & Radio group boxes are mainly for selection purposes

Repetition Activities do help with …
● Find lowest / highest values
● Calculate sum or average of a column of numbers
● Search or Filter based on a selected item’s value

Summary

IT-Practical-LB-Gr10 INK06.indb 200 2019/09/26 09:57

201TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Summary

VIEW DATA IN TABLE FORMAT
Problem Solving for Developers: POLYA adapted for programmers – the IDEA
● Identifying the Problem (Understand the text. Gather known, unknown facts. Visualise facts)
● Develop a Plan (Design an Interface, an Algorithm, Variables, Data structures, etc)
● Execute the Plan (Translate your design into a real interface. Switch algorithm to code,

and so on)
● Assess the Solution (Evaluate you running, functioning application – Evaluate critical)

SaveToFile()
● File names
● Extensions

Repetition
● While Loop
● Repeat Until
● For Loop

LoadFromFile()
● Pictures
● Structured Text

Tabular Ouput
● ListBox
● Memo

Data � les
● CSV – � les
● Delimited � les

Solving a
programming

Problem with
an

I-D-E-A

In most programming languages, including Delphi, there are three types of loops that can be used:
● FOR-loop ● WHILE-loop ● REPEAT-loop

These loops generally do the same thing: They repeat several instructions until some condition is met.
However, they differ in how they decide when to start and stop the loops. The table below describes the
three loops and highlights the differences between the loops.

CONSTRUCT DESCRIPTION INITIALISATION CHANGE TEST

For Repeats instructions for a
given number of times.

Will always execute the
number of times given by
the upper boundary minus
the lower boundary plus 1.

The programmer does
not have to initialise the
‘counter’ or change and
test it. Instead, the
counter is automatically
initialised when the loop
is declared.

The counter is
automatically
incremented by 1 with
each repetition. The
counter cannot be
changed by the
programmer.

The condition is tested
at the start of the loop.
The loop ends when the
counter is larger than
the speci� ed upper
boundary.

While Repeats while a certain a
condition is met.

May not execute at all if
the condition is false
before the loop starts.

The programmer must
initialise the loop control
variable. If the variable
is not initialised, it can
start with unexpected
values resulting in
unexpected errors.

The programmer must
ensure that the code
manually changes the
loop control variable. If
this line is left out, the
loop will continue
running forever, causing
the application to crash.

The condition is tested
at the start of the loop.
The loop executes while
test is true. The loop
ends when the condition
is False.

Repeat Repeats until a certain
condition is met. It will
always execute at least
once.

The programmer must
initialise the loop control
variable. If the variable
is not initialised, it can
start with unexpected
values resulting in
unexpected errors.

The programmer must
ensure that the code
manually changes the
loop control variable. If
this line is left out, the
loop will continue
running forever, causing
the application to crash.

Unlike the while-loop, the
repeat-loop’s condition is
tested at the end of the
loop. This means the loop
will always run at least
once. The loop executes
while test is False. The
loop is ended when the
condition is True.

IT-Practical-LB-Gr10 INK06.indb 201 2019/09/26 09:57

202 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 7: Repetition

Answer the following in your own words.

1. Complete the table below to describe the different loop constructs and show their differences.

CONSTRUCT DESCRIPTION LOOP CONTINUES LOOP ENDS

Repeat

While

For

2. Give the syntax for each loop construct:

REPEAT WHILE FOR

3. What is the difference between loops and a timer?

4. What are user-controlled loops?

5. The following source code for a loop is given:

For X := A to B do
 // A single Instruction

Write down how many times the ‘single instruction’ will be executed if:
a. A ← 10 B ← 20

b. A ← 15 B ← 10

c. A ← 12 B ← 12

6. The following source code for a loop is given:

iCalc := 102; iNum := 200;
While iNum > iCalc do
 iNum := iNum MOD iCalc;

Which statements are true and correct and which are false?

a. The integer iNum ends with a value of 98.

b. The while-loop iterates endlessly.

c. The while-loop never executes.

d. iNum may not be changed inside the loop.

7. The following code demonstrates a REPEAT-UNTIL loop:

Repeat
 iNum := Random(51) * 2 + 50;
Until (iNum = 51);

Which statements are true and correct and which false?
a. The loop never executes.

b. This loop will execute at least once.

c. The loop produces even numbers.

d. Numbers between 50 and 150 will be produced.

e. This is an endless loop.

IT-Practical-LB-Gr10 INK06.indb 202 2019/09/26 09:57

203TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Summary

Consolidation activities Chapter 7: Repetition continued

8. Go back to example 7.10. Complete the trace table if the two numbers 6 and 15 were exchanged.

LINE # iNUM1 iNUM2 iLCM (iLCM MOD iNUM2) = 0 ? COMMENT

1, 2, 3 6 15 0

9. Write a Delphi application: Save your project as ReverseString_p in a folder named 07 – Reverse String.
The application must accept a small sentence, like: ‘Grade 10 pupil’ and has to reverse the string, so that the
� rst letter is capital again and the last letter changed to a small letter, like: ‘Lipup 01 edarg’.
Hint: Use the Upcase function to convert a character to uppercase, and use the Lowercase function to convert a
character to lowercase.

10. The program in the 07 – Error Data File folder is meant to help a person keep his cellphone safe. The program
should do the following:

● Generate a new UserName as follows:
 The user enters his name in the edtName component.

 When btnNewUserName is clicked the name is changed by replacing every vowel in the name with a
random number between 0 and 9. The numbers are then added and the sum of the random numbers is
added to the new UserName.

 The name typed into the edit box and the newly generated user name are displayed in the memo
component.

● Generate a password based on the user’s cellphone number as follows:
 The user enters the cell phone number in the edtCell component.

 When the btnPassword is clicked the cellphone number is converted to a password by replacing the
numbers 3,6,7 and 9 with the characters %,*,@,#, respectively.

 Display the password in the memo component.

a. This program does not work properly. Run the program with your name and cell number and try to identify
the errors.

b. Draw a trace table for each of the two procedures to identify the errors made in the program.

c. Apply the corrections needed to � x the identi� ed errors.

11. Write a Delphi application. Save the project as VowelsCount_p in a folder named 07 – Vowels Count.

This application accepts any small sentence and counts the number of vowels as shown in the image to the
right. Display the total number of vowels.

IT-Practical-LB-Gr10 INK06.indb 203 2019/09/26 09:57

204 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 7: Repetition continued

12. Write a Delphi application. Save the project as ExchangeCalculator_p in a folder named 07 – Currency Converter.

This Delphi application must accept any amount in Rand,
which is then converted into the selected currency. A list of
the top 10 currencies exchange rates has been provided
(2018 September). A possible interface is given below.

In September 2018 the exchange rate de� ned that R 3 000.00 would be converted to $ 208.82. Write a Delphi
application that can convert to at least � ve other top currencies as illustrated.

13. a. Write a Delphi application. Save the project as MoveBall_p in a folder named 07 – Moving Soccer Ball

Version A: Pick any single bitmap image from the � ve provided to you by the teacher.
Follow the example interface that has two bitmap buttons.
Each button will move the ball 20 small steps either to the right or then to the left.
Load all pictures: lawn and soccer ball in design-time.

Take note

To display the ball as a round object on the ‘lawn’ switch on the property Transparent from the TImage
object where you load the ball. You could use the Sleep() method, which delays the execution of your
application in units of milliseconds, for example: Sleep(500) will pause your application for half a
second before it goes on.

b. Write a Delphi application. Save the project as RollBall_p in a folder named 07 – Rolling Soccer Ball

Five bitmap images will given to you by the teacher. As you move from one image to the next you can observe
that the ball ‘turned’ a few degrees. Quickly loading the balls one after the other will give you the illusion of a
rolling ball.

img0.bmp img1.bmp img2.bmp img3.bmp img4.bmp img5.bmp

The B-version is more sophisticated than the A-version. We add another two Spin-edit boxes, a [Reset] button in
the centre, and a small label on top of the [Reset] button. The small label indicates the number of the soccer ball
image that is currently displayed. The range for the ‘Image delay’ is 30 to 300. The range for the ‘Ball speed’ is
2 to 8. [Reset] brings the ball back to the original position with the � rst image ‘0’.

IT-Practical-LB-Gr10 INK06.indb 204 2019/09/26 09:57

205TERM 3 I CHAPTER 7 REPETITION I UNIT 7.10 Summary

Consolidation activities Chapter 7: Repetition continued

The “ball” is moved by THIS number of
pixels (left or right)

The “ball” is delayed by this number of
milliseconds, before moving on

Take note

Each time the ball moves to its next position it also changes to the follow-up image or previous image
(depending whether we move right or left), to keep up the rolling illusion! This time images are loaded
during runtime.

14. Write the following Delphi application. Save the project as Library_p in a folder named 07 – Library.

a. Design an interface like the one displayed. Make sure that component names are descriptive. The
application gathers information of borrowed books from Grade 10 to 12 learners.

b. Validate data input for all three items: Learner name, grade selected, and number of books borrowed. If any
input is missing, inform the user with: ‘First complete data entry!’ and do not add any incomplete data.

c. The [Reset Single Entry] button clears the ‘Learner Name’ � eld, unselects any grade and resets the combo
box for a new selection.

d. The [Finalise Report] button adds the summary at the bottom, for example, Total Learners, and so on.

The next three exercises are based on the same tab delimited � le: Grd10Term1.txt.
Each row represents a learner’s Surname, First name and mark, respectively.

15. Create a project as MarkDataA_p and save it in the folder named 07 – Mark Data A.

IT-Practical-LB-Gr10 INK06.indb 205 2019/09/26 09:57

206 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 7: Repetition continued

a. Read the text � le data into the ListBox when the [Read Data] button is clicked.

b. Display the total of all the marks when the [Total Marks] button is clicked.

c. Display the total number of learners in the list as illustrated.

d. Calculate and display the term 1 average mark correct to one decimal place.

e. Add the result of the average to the bottom of the list as illustrated.

16. Write the following Delphi application. Save the project as MarkDataB_p in a folder named 07 – Mark Data B.

This application reads the same � le as used in question 15. BUT this time the data � le is saved inside a subfolder
named Data.

When the [Add Symbol] button is clicked, the symbol achieved by each learner must be determined and
displayed as illustrated. Symbols are allocated as follows:

80–100% –> A

70–79 % –> B

60–69 % –> C

50–59 % –> D

40–49 % –> E

Otherwise –> F

The [Save Marks] button will:

a. save all ListBox data under a new � le
name in subfolder Data.

b. save the contents of the list box to a new
� le called Grd10T1Symbols.txt in the folder
named 07 – Mark Data C.

17. Create the project as MarkDataC_p in a folder named 07 – Mark Data C.

This application will read the � le produced and saved in the previous question.

a. When the [Read Data] button is clicked, the data must be loaded into the ListBox. At the same time, unique
symbols for marks must be identi� ed and listed inside a RadioGroup box. In our example only D, E and F
symbols were identi� ed. (The sequence of symbols (like from A to C) does not matter at this point in time).

b. Next the user must be able to click on one of the symbols listed. An OnClick-event for the RadioGroup box
must be programmed to extract all the learners that achieved the selected symbol. These learners are
displayed on the ListBox on the right. The header of that ListBox must change accordingly.

c. Save and close the project.

Successful SAVING
was con� rmed!

The symbol column was
added to the ListBox

IT-Practical-LB-Gr10 INK06.indb 206 2019/09/26 09:57

207TERM 3 I CHAPTER 8 STRING MANIPULATION

TERM 3

 CHAPTER

8STRING MANIPULATION

CHAPTER UNITS

Unit 8.1 Combining strings and determining the length of a string

Unit 8.2 Formatting characters

Unit 8.3 Scrolling through a string

Unit 8.4 Manipulating strings

Learning outcomes

At the end of this chapter, you should be able to:
● explain the concept of string manipulation
● scroll through a string
● search for a character in a string.
● change a string
● build a string.

 INTRODUCTION

Often data is encoded into a string. Strings are variables that are made up of a
sequence of letters, numbers and symbols. One example of a string is your South
African identity number. Your date of birth and gender are just two of the data
items encoded into your ID number.

Strings can be manipulated and changed in a wide variety of ways in Delphi. We
need to be able to decode strings and separate data items – this is an essential
coding skill.

In this chapter you will learn how multiple small strings can be combined into a
single large string, or one string can be broken into multiple smaller strings. You
will learn how to � nd the position of one character inside a string and replace all
the characters of one type with another. You will also learn how to delete text from
strings and insert text into strings.

IT-Practical-LB-Gr10 INK06.indb 207 2019/09/26 09:57

208 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Combining strings and determining the length of a string8.1

UNIT

In every chapter so far, you have been using strings to display output with
appropriate messages. For example:

memDisplay.Lines.Add('The sum is: '+IntToStr(iSum));

In this example:
● the MemoBox component displays strings
● two strings are displayed: ‘The sum is: ‘ and IntToStr(iSum)

COMBINING STRINGS
To combine strings, we use the following syntax:

Combining strings syntax
sNew := String1 + String2 + … + String1000;

This syntax is straightforward – you simply add all the strings together using the
+ operator:
In the example above, we could also have combined the two strings before
displaying them. For example:

Combining strings syntax
 sOutput := 'The sum is: '+IntToStr(iSum);
 memDisplay.Lines.Add(sOutput);

You can combine any number of strings. However, doing so needs careful
consideration. You need to consider things such as spacing between strings,
whether strings should be displayed on different lines or in columns. For example,
imagine that you have a list of � rst names and surnames and you want to use to
create a new list in which the name and surname are combined. You might write
the following code:

Combining names and surnames
sFirstName1 := 'peter';
sFirstName2 := 'joe';
sSurname1 := 'smith';
sSurname2 := 'ali';

sName1 := sFirstName1 + sSurname1;
sName2 := sFirstName2 + sSurname2;
ShowMessage(sName1); // displays petersmith
ShowMessage(sName2); // displays joeali

However, when you display string sName1 and sName2, you realise that the
output is displayed without a space between the name and surname!

Take note

A space is indicated as follows:

● Type a single quote ‘
● Press the space bar once
● Type another single quote ‘
● ‘ ‘

An empty string is indicated as follows:

● Type a single quote ‘ followed
immediately by another single quote’

● ‘’

IT-Practical-LB-Gr10 INK06.indb 208 2019/09/26 09:57

209TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.1 Combining strings and determining the length of a string

Rather than simply combining the name and surname variables, you need to add
a space between the two strings. Here is the correct code that you should have
added:

Combining strings correctly
sName1 := sFirstName1 + ' ' + sSurname1; // peter smith
sName2 := sFirstName2 + ' ' + sSurname2; // joe ali

This problem is very common since most strings are not saved with a space at
the end. So, before you combine any strings, ask yourself if your combined result
will have the correct spacing before running the application.

DISPLAYING OUTPUT THAT HAS AN APOSTROPHE
What about output that has an apostrophe in it? Look at the examples below to
help you understand this:

Example 8.1

If you want to display the string ‘God’s Window, Mpumalanga’, then the code will be:

showMessage('God''s Window, Mpumalanga')

Example 8.2

You have the following code:

sName := 'John';
iMark := 78

To display the learner’s name and mark in the format: John’s mark is 78

sMessage := sName + '''s' + mark is 'IntToStr(iMark);
ShowMessage(sMessage)

DETERMINING THE LENGTH OF A STRING
Remember that a string is a list of characters. For example, the following strings:
● ‘John’ has 4 characters
● ‘John Smith’ has 10 characters – space is also a character
● ‘jsmith@gmail.com’ has 16 characters
● ‘032 551 4241’ has 12 characters

You can count the numbers of characters in a string using the Length function. It
will return the number of characters in a string, for example:

 ilen := length('Delphi’);
 ShowMessage('The length of your name is:
 '+IntToStr(length(sName)));

Take note

To display an apostrophe in
a string: place two single
quotes '' immediately one
after another

Remember!

The Length function was
introduced in Chapter 5.

IT-Practical-LB-Gr10 INK06.indb 209 2019/09/26 09:57

210 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 8.3 Best birthday card

After struggling to write a nice birthday message on a card for a friend, you decide to create a program that will
automatically generate birthday cards with beautiful messages for your friends. With some online research, you
identify � ve birthday messages that you can place on your cards:

● ‘Count your life by smiles, not tears. Count your age by friends, not years. Happy birthday, <NAME>!’
● ‘May your Facebook wall be � lled with messages from people you never

talk to. Happy birthday, <NAME>!’
● ‘You are only young once, but you can be immature for a lifetime.

Happy birthday, <NAME>!’
● ‘From good friends and true, from old friends and new, may good luck go

with you and happiness too! Happy birthday <NAME>!’
● ‘I hope all your birthday wishes and dreams come true.

Happy birthday, <NAME>!’

The program must prompt for your friend’s name and randomly select one of the � ve messages to generate a
birthday card.

1. Open the BestBirthdayCard_p project from the 08 – Best Birthday Card folder. If you wish to, you can change
the fonts and colours to something you like.

2. Create an OnClick event for the [Generate] button to:

● declare three local string variables: sMyName, sFriendName and sMessage
● declare a local integer variable: iRandom
● set the value of sMyName to your own name
● prompt the user to enter a friend’s name in the text box and assign the value to sFriendName
● generate a random integer in the range 1 to 5 and assign it to iRandom. Remember to use the Randomize

statement before you generate a random number
● using a CASE statement, set the value of sMessage to one of the � ve birthday messages, based on the

randomly generated number
● generate the birthday card.

Take note

<Name> refers to the
name of a friend that you
are sending a message to.

IT-Practical-LB-Gr10 INK06.indb 210 2019/09/26 09:57

211TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.1 Combining strings and determining the length of a string

Example 8.3 Best birthday card continued

Here is the code for the event handler:

The code for the event handler:
procedure TfrmBirthday.btnGenerateClick(Sender: TObject);
var
 sMyName, sFriendName, sMessage : String;
 iRandom : Integer;
begin
 sMyName := 'Stefan';
 sFriendName := edtName.Text;
 Randomize;
 iRandom := Random(5) + 1;

 case iRandom of:
 1 : sMessage := 'Count your life by smiles, not tears. Count your
 age by friends, not years. Happy birthday,';
 2 : sMessage := 'May your Facebook wall be fi lled with messages from
 people you never talk to. Happy birthday,';
 3 : sMessage := 'You are only young once, but you can be immature
 for a lifetime. Happy birthday,';
 4 : sMessage := 'From good friends and true, from old friends and
 new, may good luck go with you and happiness too! Happy birthday,';
 5 : sMessage := 'I hope all your birthday wishes and dreams come
 true. Happy birthday,';
 end;
 lblCover.Text := 'Happy Birthday, ' + sFriendName;
 lblGreeting.Text := 'Hi ' + sFriendName + '!';
 lblSalutation.Text := 'From ' + sMyName;
 lblBody.Text := sMessage + ' ' + sFriendName + '!';

end;

3. Save and run your application. You can click the [Generate] button multiple times to create different cards.

IT-Practical-LB-Gr10 INK06.indb 211 2019/09/26 09:57

212 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 8.1 Advanced calculator: Operator buttons

To create the OnClick procedure for the mathematical operator buttons, you � rst need to consider the work� ow of a
normal calculator: With a normal calculator, you start by entering a number. Once the number has been entered, you
click on one of the mathematical operators. This stores the number that you have entered in memory and allows you
to enter a new number. When you are done entering the second number, you can press the equals sign to calculate a
solution.

To recreate this work� ow in our application:

8.1.1 Open the AdvancedCalculator_p project from the 08 – Advanced Calculator folder.

8.1.2 Create two global variables called rStoredNumber and sOperator.

8.1.3 Create an OnClick event for the plus(+) button and add the following code:

Plus button OnClick event
 rStoredNumber := StrToFloat(lblValue.Caption);
 sOperator := '+';
 lblValue.Caption := '';
 lblCalculation.Caption := FloatToStr(rStoredNumber) + ' ' +

sOperator;

The � rst line will convert the string from the lblValue label to a real number and store it in the global variable
rStoredNumber. Next, the code will store the type of mathematical operator being used in a global variable.
The lblValue label is set to an empty string.Finally, it will show the calculation being completed in the
Calculation label at the top of the calculator.

8.1.4 Create similar OnClick events for the other mathematical operators, only changing the value stored in the
sOperator variable.

8.1.5 Save and run your project.

It is starting to look good! The only thing left to do is create an equals button event. This will be done in
the next activity.

IT-Practical-LB-Gr10 INK06.indb 212 2019/09/26 09:57

213TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.1 Combining strings and determining the length of a string

Guided Activity 8.2 Advanced calculator: Equals to (=) button

The � nal step of your calculator program is to add, subtract, multiply or divide the value stored in the rStoredNumber
variable with the value shown on the lblValue label.

To do this:

8.2.1 Open the AdvancedCalculator_p project.

8.2.2 Create an OnClick event for the equals to (=) button:

● Create two local variables rCurrentNumber and rTotal.
● Store the value in lblValue in rCurrentNumber:

 rCurrentNumber := FloatToStr(lblValue.Caption);

● Add the contents of rStoredNumber, sOperator and rCurrentNumber and store the value in lblCalculation:

 lblCalculation.Caption := FloatToStr(rStoredNumber) + ' ' +
sOperator + ' ' + FloatToStr(rCurrentNumber);

This will store the current value in a variable rCurrentNumber and update the calculation string. To ensure the
correct operator is used, you will need to use conditional statements.

8.2.3 Create conditional statements that calculate the value of rTotal based on the operator stored in sOperator.
For example, you could create the following IF-THEN-statement for the plus operator:

if-then statement
 if sOperator = '+' then
 rTotal := rStoredNumber + rCurrentNumber;

8.2.4 Convert rTotal to a string and assign it to the lblValue.Caption property. Once done, your procedure should
look as follows.

Full procedure code
procedure TfrmCalculator.btnEqualClick(Sender: TObject);
var
 rCurrentNumber, rTotal : Real;

BEGIN
 rCurrentNumber := StrToFloat(lblValue.Text);
 lblCalculation.Caption := FloatToStr(rStoredNumber) + ' ' +
sOperator + ' ' + FloatToStr(rCurrentNumber);

 if sOperator = '+' then
 rTotal := rStoredNumber + rCurrentNumber;

 if sOperator = '-' then
 rTotal := rStoredNumber – rCurrentNumber;

 if sOperator = '*' then
 rTotal := rStoredNumber * rCurrentNumber;

 if sOperator = '/' then
 rTotal := rStoredNumber / rCurrentNumber;

 lblValue.Caption := FloatToStr(rTotal);
END;

IT-Practical-LB-Gr10 INK06.indb 213 2019/09/26 09:57

214 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 8.2 Advanced calculator: Equals to (=) button continued

8.2.5 Instead of four separate IF-THEN statements you can use a CASE-statement:

case sOperator of
 ‘+’ : rTotal := rStoredNumber + rCurrentNumber;
 ‘-‘ : rTotal := rStoredNumber – rCurrentNumber;
 ‘*’ : rTotal := rStoredNumber * rCurrentNumber;
 ‘/’ : rTotal := rStoredNumber / rCurrentNumber;
end;

8.2.6 Save your program and test it. You should now be able to use it like a normal calculator.

Congratulations on creating a real calculator! For this program, you needed to create a large number of
events, local and global variables of different types, as well as combine strings and use conditional
statements to complete calculations. By combining everything you have learned so far, you were able to
create a fully functional program!

For Enrichment Creating an executable � le for your advanced calculator project

To celebrate completing your calculator application, you can convert it to an executable � le which can be used on any
computer. To do this:

1. Open the Project menu at the top of RAD Studio.

2. From the menu, select Project and click on the Build All Projects button.

IT-Practical-LB-Gr10 INK06.indb 214 2019/09/26 09:57

215TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.1 Combining strings and determining the length of a string

For Enrichment Creating an executable � le for your advanced calculator project continued

3. Once the build is complete, click on the [OK] button.

4. Open the project’s folder in Microsoft Explorer.

5. You should see an application � le with your project’s name.

Application File created which can be run on any computer

6. Once the build is complete, click on the [OK] button.

7. Open the project’s folder in Microsoft Explorer.

8. You should see an application � le with your project’s name.

9. Run this application to open your calculator.

10. You can now copy this � le onto a � ash disk and use it on any computer!

IT-Practical-LB-Gr10 INK06.indb 215 2019/09/26 09:57

216 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.1

Open the Example_p project from the 08 – Practise Strings folder.

Study the example shown below.

8.1.1 Create a [Magic Number] button by dividing a random number between 50 and
100 by your age and multiplying the result with 0.93.

8.1.2 Display information from various inputs as a single string.

8.1.3 Complete the OnClick event for the [Display] button by following the
guidelines below:

Create a single string that displays the name and surname on the � rst line. On
the next line, display the word ‘Favourites’ followed by a colon, and the name of
the song, with the word ‘Song’ in brackets. Then display the colour with the word
‘Colour’ in brackets. On the last line, display the magic number and the word
‘Magic’ in square brackets.

IT-Practical-LB-Gr10 INK06.indb 216 2019/09/26 09:57

217TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.2 Formatting strings

You have already learnt how to format output using the FloatToStrF function. In this unit you will use a
control string to format strings. A control string is a sequence of one or more control characters, each of
which consists of the # symbol followed by an integer constant. The integer constant denotes the
corresponding ASCII character.

For now we will use three formatting characters. That is: #9 (tab character), #10 (line Feed) and #13
(Carriage Return)

One way to make sure that your line format and spacing is correct, is to use the Return character and the
Tab character. Look at the examples in the table below.

Table 8.1: Using characters to format strings

CHARACTER FORMAT CHARACTER DESCRIPTION EXAMPLE

Tab Character

<tab>

#9 ● The ASCII number 9
represents a <tab>
character.

● #9 adds tab spaces
between strings. This is
especially useful when the
string following #9 must
be aligned to a speci� c
position in the component.

lblOutput.Caption:=’First
Line’+#9+’Second line’;

Display on the lblOutput label

Carriage Return
Character <CR>

#13 ● The ASCII number 13
represents a <Carriage
return> or <enter>

● #13 adds a line break to
the string so that the
string following #13
appears on a new line.

lblOutput.Caption:=’First
Line’+#13+’Second line’;

Display on the lblOutput label

Line Feed

<LF>

#10 ● The ASCII number 10
represents a <Line Feed>

● It moves the cursor to the
beginning of the next line

lblDisplay.Caption:=’First
Line’+#10+’Second Line’;

Notes:
● You can use the #9 and #13 formatting characters to format strings.
● #9, #10 and #13 do NOT appear in quotes
● To combine strings with formatting characters, you use the + operator
● Sometimes, it will be necessary to use more than one tab character to align strings of different

lengths. To do this, you simply add the #9 character multiple times. For example:

 sDisplay := 'Mark1'+#9#9+'71%';
 memDisplay.Lines.Add('First Line'+#9#9#9+'Second Line');

Formatting strings8.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 217 2019/09/26 09:57

218 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

● The only way to know if you have added the correct number of tab characters is to test the
application and see the result. It should immediately see if you have added the incorrect number of
tab characters.

Figure 8.1: Incorrect and correct number of tab character

● Fonts like “Courier New” and “Consolas” are called monospaced fonts. This means that each
character has the same width. This includes characters like “i” and “l” (which are usually very narrow)
and characters like “m” and “w” (which are usually very wide). Monospaced fonts are useful if it is
important that your characters are lined-up.

● As with #9, if you need many carriage returns or line feeders, you add the format characters as
required.

DISPLAYING STRINGS WITH FORMATTING CHARACTERS ON A MEMOBOX
You can also display strings with formatting characters on a MemoBox as follows:
● Use #9 for tab spacing when displaying strings: memDisplay.Lines.Add(‘First Line+#9+’Second Line’).

● Use #13#10 combination to leave a line in a memo box NOT just #13 as is used in labels:

 memDisplay('First Line'+#13#10+'Second Line');

Guided Activity 8.3 Report Card

In this Guided activity, we will create a report card.

8.3.1 Open the ReportCard_p project from the 08 – Report Card folder.

IT-Practical-LB-Gr10 INK06.indb 218 2019/09/26 09:57

219TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.2 Formatting strings

Guided Activity 8.3 Report Card continued

8.3.2 Create an OnClick event for the [Generate] button as follows:

● Read the name, subject, mark1 and mark2 from the corresponding edit boxes. You may assume that the
marks will be out of 100.

● Calculate the average of the two marks.
● Determine the message that will be displayed in the string variable sMessage. The message is based on

the rounded integer average mark as follows

ROUNDED INTEGER AVERAGE MARK MESSAGE

80 to 100 excellent

60 to 79 strong

40 to 59 improving

0 to 39 struggling

8.3.3 Display the output on the memo box component as follows:

Name: Thandi
Subject: Mathematics

Mark 1: 80%
Mark 2: 86%
Average: 83%
Thandi, you are excellent in Mathematics

8.3.4 Save and run the project.

Activity 8.2

Open the Booking_p project from the 08 – Booking folder. Three text � les: BookingCode.txt; AmountOwed.txt and
Discount.txt are provided.

Complete this app as follows:

8.2.1 Complete the code for btnLoad to load
the text� les into the ComboBox
components by using the LoadFromFile
method of the ComboBoxes.

8.2.2 Complete the code for the [Display] button by building one string to display the values selected on each of
the ComboBox components in columns as shown in the screenshot alongside.

IT-Practical-LB-Gr10 INK06.indb 219 2019/09/26 09:57

220 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

In Chapter 3 you learnt that a string is a sequence or
list of characters stored in a single variable. Here are
some examples of strings:
● ‘John’,
● ‘54 Bird Street’
● ‘123’

DECLARATION OF STRING VARIABLES
To declare a string variable:

Var sName:string;
 sSurname:String[15];

Notes
● the variable sName can hold up to 255 characters
● the variable sSurname can hold up to 15 characters. If you assign a string with more than 15

characters to sSurname, then only the � rst 15 characters of the string will be assigned.

Each character in a string has a position with the � rst character of the string starting at position 1.
For example, in the string sString:= ‘I LOVE CODING’

CHARACTER I L O V E C O D I N G

POSITION 1 2 3 4 5 6 7 8 9 10 11 12 13

● the � rst character starts from position 1
● space/s have position/s as well. See positions 2 and 7
● the length of the string is 13
● the last character ‘G’ is stored in position 13.

An empty string, denoted by '' , has 0 characters.
You can access each character in a string by using its position. To access a character in a string use the
syntax:

 variableName [position]

● the string variableName followed by the position of the character in square brackets[]
● for example, sString[5] will refer to character ‘V’ and sString[10] will refer to character ‘D’ in the

table above.

Example 8.4

Given: sName := ’Thandi’;

 sName[1] will have the value ‘T’

 sName[2] will have the value ‘h’

 …

 sName[6] will have the value ‘i’

sName[n] is also a variable of type Char and represents a single character. The following code snippets
show how this can be done.

Remember!

A character can be a letter, digit, space or any
special character such as $, #, ;, @ and so on.
Refer to Appendix B for the ASCII table

Scrolling through a string8.3

UNIT

IT-Practical-LB-Gr10 INK06.indb 220 2019/09/26 09:57

221TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.3 Scrolling through a string

Table 8.2: Code snippets for representing single characters

READING SYNTAX WRITING SYNTAX EXAMPLES

Reading characters
cChar :=
sString[iCharNumber];

Writing characters
sString[iCharNumber] :=
cChar;

Accessing characters in a string
sValue := ‘Hello, World!’;
cFirst := sValue[1]; // H
cSecond := sValue[2]; // e
sValue[13] := ‘?’; //

● The character stored in
position iCharNumber of
sString is stored in char
variable cChar

● The value stored in char variable
cChar is stored in position
iCharNumber in string sString

● cFirst is assigned the value ‘H’
● cSecond is assigned the value ‘e’
● The character in position 13 in

string sValue is overwritten with a
‘?’. sValue now has the string value
‘Hello, World?’

The position variable also known as the index can be used as a loop variable in a FOR-loop. This will allow
you to scroll through the string as follows:

 for index ← 1 to Length(sName) do //index used as loop variable
 begin
 Output sName[index] //index used as position variable
 Newline
 endfor

Guided Activity 8.4

Display each character of sName on a new line in a memo component memOutput. Use the Courier New font.
sName:=’THANDI’;

The Output must be:

 T

 H

 A

 N

 D

 I

This program must display one character at a time from string ‘Thandi’ one below the other starting from the
� rst character.

8.4.1 Open the ExtractingCharacters_p project from the 08 – Extracting Characters folder.

IT-Practical-LB-Gr10 INK06.indb 221 2019/09/26 09:57

222 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 8.4 continued

8.4.2 Create an OnClick event for the [Extract Character from the beginning] button and do the following:

a. Declare two local variables sName and iIndex. sName will hold the name ‘THANDI’, and iIndex will hold
the position of a character in the string sName.

b. Clear the memDisplay memo box.

c. Assign ‘THANDI’ to sName.

d. Loop from � rst character position 1 to the position of the last character (length(sName)).

e. Display the character at each position in sName in the memDisplay

procedure TfrmExtractingCharacters.
btnExtractFroBeginClick(Sender: TObject);
var
 sName: String;
 iIndex: Integer;
begin
 sName := 'THANDI';
 memDisplay.Lines.Clear;
 for iIndex := 1 to Length(sName) do
 begin
 memDisplay.Lines.Add(sName[iIndex]);
 end;
end;

8.4.3 Save and run the project

8.4.4 Create an OnClick event for the [Extract Characters from the End] button to extract the characters from
sName and display the output is memDisplay memo component as follows:

 I

 D

 N

 A

 H

 T

a. Declare two local variables sName and iIndex. sName will hold the name ‘THANDI’ and iIndex will hold
the position of a character in the string sName.

b. Assign ‘THANDI’ to sName.

c. Clear the memDisplay memo box.

d. Loop from last character position (length(sName) down to the � rst character position 1.

IT-Practical-LB-Gr10 INK06.indb 222 2019/09/26 09:57

223TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.3 Scrolling through a string

Guided Activity 8.4 continued

e. Display the character at each position in sName in the memDisplay.

procedure TfrmExtractingCharacters.
btnExtractFromEndClick(Sender: TObject);
var sName:string;
 iIndex:Integer;
begin
 memDisplay.Lines.Clear;
 sName := 'THANDI';
 for iIndex := Length(sName)downto 1 do
 memDisplay.Lines.Add(sName[iIndex]);
end;

8.4.5 Save and run the program and click on the [Extract Characters from the End] button.

Being able to access an individual character in a string allows you to use a character from a string in
different ways or to manipulate the string by replacing, deleting or inserting a character. You can:
● create conditional statements based on speci� c characters.
● copy certain characters.
● compare speci� c characters in different strings.
● assign new values to individual characters.
● delete individual characters.

Activity 8.3

8.3.1 Given:

sh outOut ← I Love computer programming

a. Give the reference to each vowel in shoutOut in the form variable[position].

b. Which characters are found at the position indicated by the following?

 shoutOut [3]

 shoutOut [7]

c. Write down the value of Length(shoutOut).

8.3.2 Which of the following programming code structures would you use to scroll through the string? Motivate
your choice.

a. FOR-loop b. REPEAT-UNTIL

c. IF-statement d. WHILE-DO

IT-Practical-LB-Gr10 INK06.indb 223 2019/09/26 09:57

224 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.3 continued

8.3.3 Read and trace the following algorithm:

Line 1: greeting ← 'Hello' //5 characters
Line 2: Output ← ''
Line 3: for j ← 1 to 5 do
Line 4: output ← output+greeting[j]+'-'
 endfor

Reproduce the trace table given below to trace the algorithm:

LINE GREETING J J <= 5 OUTPUT

8.3.4 Given: shoutOut ← ‘Accessing a character in a String is easy’

 n ← 16

 m ← 3

Write down the characters found at the given position in each case:

a. shoutOut[n + 2] b. shoutOut[n – 6] c. shoutOut[n × 2]

d. shoutOut[n DIV 2] e. shoutOut[n + 3 × m] f. shoutOut[n × 3]

8.3.5 Data items for a road runner is given as a comma delimited string in the format: Name,Age group,Race
distance,Time Given:

line ← John,50-59,10,39:45

a. aGive the variable[Position] reference for each of the commas in line.

b. Complete the table below, where Pos1 and Pos2 is the start position and end position of the data item in
Line. Also provide a concatenation of characters for each data item.

 DATA POS1 POS2 LINE[]+ LINE[]…

Name 1 4 line[1]+line[2]+line[3]+line[4]

Age group 6 10 line[6]+...

Race distance

Time

c. Given the pseudocode:

dataItem ← ''

for index ← pos1 to pos2 do…,

dataItem ← X + Y[Z]

To extract the data from line, what must X, Y and Z be?

IT-Practical-LB-Gr10 INK06.indb 224 2019/09/26 09:57

225TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.3 Scrolling through a string

Activity 8.4

8.4.1 Write algorithms (pseudocode or � owchart) to:

a. display a word in reverse order.

For a solution do the following:

 Get user input and store it in a variable.

 Initialise a string variable to hold the reversed word to an
empty string.

 Loop from the last character down to the � rst character.

 Concatenate these characters to the variable for the
reversed word.

 Output the reversed word.

b. display every second character in a string.

For a solution consider the following:

 Focus on the exit point in the for-loop.

 Must the loop scroll to the end of the string or just halfway?

 Use DIV to calculate the middle of a string if needed.

 How can the loop variable be used to increase the position variable by 2?

c. Provide trace tables for the algorithms in a) and b).

8.4.2 Write pseudocode to display the greetings ‘Hello’ and ‘Hello World’ as follows:

a. H b. H W

e e o

l l r

l l l

o o d

c. Test your solutions to a) and b) in a trace table.

8.4.3 Rectangular Text:

Let rectangular text be text that wraps around in a rectangle of a given width, where the width represents the
number of characters per line.

 Example input:

Rectangle width = 11

Text = ‘labels are commonly used to display information’

Output:

Labels are commonly used to
display information

 Write an algorithm in pseudocode to display any text and width input, as Rectangular Text. Pay careful
attention to the position variable when the characters are concatenated to form a line and don’t forget to
re-initialise the line variable to an empty string.

Take note

The new notation string
Variable[position] makes
accessing each character
so easy.

IT-Practical-LB-Gr10 INK06.indb 225 2019/09/26 09:57

226 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 8.5

Write a program that will display the user input with each character followed by a hyphen.

If the input is: groovy The output must be: g-r-o-o-v-y-

 OCR software O-C-R- -s-o-f-t-w-a-r-e-

 17 Church Str 1-7- -C-h-u-r-c-h- -S-t-r-

 R 100.00 R-1-0-0-.-0-0-

Note: spaces, digits, punctuation symbols are all characters.

IPO:

Input Processing Output The Memo box component’s Lines.
Add(s) method will displays in one line.

The for-loop loops through the word
one character at a time from the � rst
to the last character.

The line g-r-o-o-v-y- must be prepared
before it can be displayed.

Line ← Line + word[k] + ‘-‘ , prepares
the line, where word[k] is the letter in
groovy at position k.

word Line ← ‘’

For k ← 1 to Length(word)

 Line ← Line + word[k] +
‘-‘

endfor

Line

Component:

inputBox

Component:

Memo box

Delphi code:

var
 sWord: String;
 k: Integer;
 sLine: String;
begin
 memOutput.Clear;
Line 1: sWord := InputBox('Question 1','Enter text: ','');
Line 2: sLine := '';
Line 3: for k := 1 to Length(sWord) do
 begin
Line 4: sLine := sLine + sWord[k] + '-';
 end;
Line 5: redOutput.Lines.Add(sLine);
end;

IT-Practical-LB-Gr10 INK06.indb 226 2019/09/26 09:57

227TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.3 Scrolling through a string

Example 8.5 continued

Complete the trace table:

LINE sWORD sWORD[k] sLINE k k <= LENGTH(sWORD) OUTPUT

1 groovy

2 ''

3 1 true

4 g g-

3 2 true

4 r g-r-

3 3 true

4 o g-r-o-

ˆ

5

Stop

Activity 8.5

Open the Delphi project CharacterAccess_p in folder 08 – Character Access. Code for
the example as shown alongside, run the program and click question 1.
Input the text, groovy, and con� rm the output, g-r-o-o-v-y-.

8.5.1 Button [Question 1]

Change the program to output g-r-o-o-v-y, without the last hyphen.
The following questions will assist you to � nd one of many possible
solutions.

a. Must sLine be initialised to ‘’? What if it is initialised to the � rst
character of sWord?

sLine ← sWord[1];

b. What effect will such a change have on Line 3 and Line 4 in the example code on the previous page?

c. What value must k start with?

d. Will the current order of concatenation work? i.e. sLine + sWord[k] + ‘–‘. If not how will you change it?

8.5.2 For each of the question below, complete the code.

a. Button [Question 2]

Display the word entered by the user in reverse order.

Example: Input: YOLO output: OLOY

IT-Practical-LB-Gr10 INK06.indb 227 2019/09/26 09:57

228 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.5 continued

b. Button [Question 3]

Display every third character of the user input for
sentence by implementing the given � owchart.

Example:

Input: sentence ← learning to code

Output: Line ← ai d

There are 2 spaces between the i and d.

Stop

Start

False

input sentence

Display Line

Line ← “

i ← 1

i ← i + 1

← Line ← Line + sentence[i × 3]

Line ← length(sentence)

True

i <= Length DIV 3

c. Button [Question 4]

Display the word entered with each letter below each other starting from character at position 1.

 Example input: CAT output: C

 A

 T

d. Button [Question 5]

 Display the word entered for each letter below each other starting from the last character.

 Example input: CAT output: T

 A

 C

e. Button [Question 6]

Display the string ‘Hello’ as indicated:

H

e

l

l

o

f. Button [Question 7]

Display the string ‘Hello World’ as indicated:

H W

e o

l r

l l

o d

Activity 8.6

Create a Delphi project to implement your Rectangular text algorithm. Name the project RectText_p and the unit
RectText_u and save them in a folder named 08 – Rectangular Text.

Provide the interface with the following:
● Labels for width and text.
● Edit boxes for width and text.
● Set the width edit to accept numbers only. The Edit Box for width must be set to receive numbers only.
● A button with the caption ‘Show Rectangular Text’.
● A memo component to display the text. Set the font for the memo to Courier New.

IT-Practical-LB-Gr10 INK06.indb 228 2019/09/26 09:57

229TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.3 Scrolling through a string

Activity 8.6 continued

8.6.1 Write down a Delphi code statement to do each of the following:

a. Declare variables sText, iWidth, iIndex and sLine. The pre� x indicates each data type.

b. Clear the memo component.

c. Read the width and text from the edit boxes and assign it to iWidth and sText, respectively. Convert the
data type if required.

d. Initialise sLine to an empty string.

e. A for-loop to scroll from position 1 to the length of the text using the loop variable iIndex.

f. Concatenate the character to sLine.

g. Test if the position is a factor of iWidth. Use the MOD operator.

h. If iWidth is a factor of iIndex then: add sLine to the memo.

i. Re-initialise sLine to an empty string.

j. After the execution of the For-loop, add the remaining text to the memo.

8.6.2 Insert your code statements in 8.6.1 as code for button [Show Rectangular Text] to be executed when the
button is clicked.

8.6.3 Improve your program by checking if data is present in the edits. The edits should not be empty when the
button [Show Rectangular Text] is clicked. If it is empty then show a suitable error message in a message box.

8.6.4 Add a second button with caption [Best Fit] to the program.

Code button [Best Fit] to:

a. Hardcode iWidth1 = 6 and iWidth2 = 7.

b. Test which of the two values in (a) gives the best rectangular � t of characters. This would be a rectangle
with the biggest number of characters in the last line. If more than one of the hardcoded width numbers
give the same number of un� lled places in the last line, then choose the larger width.

c. Display the best width in edtWidth.

Guided Activity 8.5 Accessing individual characters

Look at the following code snippet.

Strings
sName := 'Lundi';
sPhrase := 'I love programming!';

Using a pen and paper, answer the following questions.

8.5.1 What is the value of the following characters?

a. sPhrase[1] b. sPhrase[5] c. sPhrase[12]

d. sName[3] e. sName[2]

8.5.2 Give the location of each vowel (a, e, i, o and u) in the strings above, using square bracket notation.

IT-Practical-LB-Gr10 INK06.indb 229 2019/09/26 09:57

230 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

UNIT

8.4 Manipulating strings

Now that you know how to scroll through each character of a string, you can start manipulating the string.
In this unit, you will learn how to do the following:
● � nd all instances of a speci� c character.
● change all instances of a character into a different character.
● delete a character from a string.
● insert a character into a string.
● determine the position of a character in a string.
● � nd a character.

Guided Activity 8.6 Finding all occurrences of a character in a string

8.6.1 Open the SearchCharacter_p project from the 08 – Find Character folder.

8.6.2 Create an OnClick event for the [Search All Occurrences] button to determine the positions of a search
character in a string:

a. Declare four local variables: sPhrase, cSearch, iIndex and bFlag where sPhrase is the search string,
cSearch is the search character, iIndex will be used as a loop counter and bFlag will be used to
determine whether the search character cSearch is found in the search string sPhrase

var sPhrase:string;
 cSearch:char;
 iIndex:Integer;
 bFlag:Boolean;

b. Clear the memDisplay memo component:

memDisplay.Lines.Clear;

c. Set a variable bFlag to FALSE. This variable will be used to determine whether the search character is in
the search string or not.

bFlag := False;

d. Read the search string from the edtPhrase edit box component and assign the value to the sPhrase
variable.

e. Read the search character from the edtSearch edit box and assign the value to the cSearch variable.
Remember that you are reading string data from the edtSearch edit box and therefore cannot assign it
directly to the character variable cSearch. You will get a type mismatch error. To ensure you don’t get an error:

sPhrase := edtPhrase.Text;
cSearch := edtSearch.Text[1];

IT-Practical-LB-Gr10 INK06.indb 230 2019/09/26 09:57

231TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Guided Activity 8.6 Finding all occurrences of a character in a string continued

f. Loop using a loop counter from 1 to the length of sPhrase

 for iIndex := 1 to Length(sPhrase) do

g. Check whether the character at the loop counter position is equal to the search character cSearch.

 if sPhrase[iIndex] = cSearch then

If the character at the loop counter position is equal to the search character sSearch then display the
loop counter position. Also set the bFlag variable to true. This indicates that a match has been found.

 memDisplay.Lines.Add(cSearch+' found in position
'+IntToStr(iIndex));

 bFlag:=True;

h. Once the loop is exited, determine whether a match has been found. If a match has not been found, then
display a message ‘Character not found in string’.

 if not(bFlag) then
 memDisplay.Lines.Add('Character not found in string');

procedure TForm1.btnSearchAllClick(Sender: TObject);
var sPhrase:string;
 cSearch:char;
 iIndex:Integer;
 bFlag:Boolean;
begin
 memDisplay.Lines.Clear;
 bFlag := False;
 sPhrase := edtPhrase.Text;
 cSearch := edtSearch.Text[1];
 memDisplay.Lines.Add('Positions of '+cSearch+' in string
 '+sPhrase);
 for iIndex := 1 to Length(sPhrase) do
 begin
 if sPhrase[iIndex] = cSearch then
 begin
 memDisplay.Lines.Add(cSearch+' found in position
 '+IntToStr(iIndex));
 bFlag := True;
 end;
 end;
 if not(bFlag) then
 memDisplay.Lines.Add('Character not found in string');

end;

IT-Practical-LB-Gr10 INK06.indb 231 2019/09/26 09:57

232 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 8.6 Finding all occurrences of a character in a string continued

8.6.3 Save and run the project.

8.6.4 You can also � nd the FIRST occurrence of a character in a string. Study the code below:

Finding the position of the � rst matching character
Line 1: iPosition := 0;
 // the initial position of the search
 //character in the search string
Line 2: sPhrase := edtPhrase.text;
 // read the value for sPhrase – the
/ /search string
Line 3: cSearch := edtSearch.text[1];
 // read the value for cSearch – the search character
Line 4: for i:= 1 to Length(sPhrase) do
 //loop from position 1 to length(sPhrase)
Line 5: begin
 //if the character at loop counter position i=the search
 //Character and iPosition=0
Line 6: if (sPhrase[i] = cSearch) and (iPosition = 0) then
Line 7: iPosition := i;
 //if condition in line 6 is true, assign value
 //of loop counter to iPosition
Line 8: end;
Line 9: if iPosition = 0 then
 // when the loop is exited, check whether iPosition=0
Line 10: memDisplay.Lines.Add('o not found')
 //if iPosition =0 is true, then no match found
Line 11: Else
 //otherwise a match is found.
 //Display the position of the match
Line 12: memDisplay.Lines.Add(('o found at position ' +
 IntTostr(iPosition));

IT-Practical-LB-Gr10 INK06.indb 232 2019/09/26 09:57

233TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Guided Activity 8.6 Finding all occurrences of a character in a string continued

Assume ‘Hello Jo’ will be read for sPhrase in Line 2 and character ‘o’ for cSearch. Trace through the � owchart
using these values.

Line
Number

iPosition sPhrase cSearch i i <= 8 sPhrase[i]=cSearch
and
iPosition=0

iPosition=0 Output

1 0

2 Hello Jo

3 o

4 1 T

6 F

4 2 T

6 F

4 3 T

6 F

4 4 T

6 F

4 5 T

6 T

7 5

4 6 T

6 F

4 7 T

6 F

4 8 T

6 F

4 9 F

9 F

12 5

IT-Practical-LB-Gr10 INK06.indb 233 2019/09/26 09:57

234 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Guided Activity 8.6 Finding all occurrences of a character in a string continued

8.6.5 Open the SearchCharacter_p project. Create an OnClick event for the [Search for First] button to determine
the FIRST occurrence of a search character in a search string.

8.6.6 Save and run the project.

Activity 8.8

8.8.1 Given:

sentence ← ‘I love computer programming’

searchChar ← ‘r’

count ← 0

index ← 1 to length(sentence)

a. What notation do we use to refer to a character in a string? Give an example.

b. Give two Boolean expressions to test for the letter ‘r’ in sentence.

c. Now place one of your Boolean expressions as the test condition of an IF-statement.

d. Give a reason for your choice of Boolean expression in (c).

e. In the body of the IF-statement, provide code to count the number of ‘r’ characters in the sentence.

f. Which character would you use as test character if you had to count the number of words?

g. Write down a test condition for vowels.

h. Describe a test condition that will determine if a character is a consonant in a sentence.

i. Provide Delphi code for your test condition in (h)

8.8.2 Complete the trace table for the algorithm given below.

Line 1
Line 2
Line 3
Line 4
Line 5

Label ← 'programming'
ch ← 'r'
for i ← 1 to length(Label) do begin
 if ch = Label[i] then
 Display ch + ' found in position ' + i
 newline
 end if
end for

IT-Practical-LB-Gr10 INK06.indb 234 2019/09/26 09:57

235TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Activity 8.8 continued

 Line Label ch i i <= Length(Label) Label[i] Label[i] = ch Output

1 programming

2 r

8.8.3 Read the following Delphi code.

 var
Line 1: sIdNumber: String;
Line 2: sLine: String;
 begin
Line 3: redOutput.Clear;
Line 4: sIdNumber := edtIDNumber.Text;
Line 5: if StrToInt(idNumber[7]) >= 5 then
Line 6: redOutput.Lines.Add('Gender: male')
 else
Line 7: redOutput.Lines.Add('Gender: female')
 end;

a. Explain the code for each numbered line.

b. The purpose of the code is to determine a person’s gender. Explain how the code determines the gender?

c. Will the idNumber[7] >= ‘5’ give the same result? Open the Gender_p project from the 08 – Show
Gender folder. Run it, then make the suggested change to see if gives the same result.

d. Explain why the change in (c) worked or did not work.

Activity 8.9

8.9.1 Write an algorithm in pseudocode to count the number of vowels in a string.

Example: Input: ‘Count the vowels’ Output: 5

8.9.2 Give an algorithm in � owchart form to display a * in place of a vowel.

Example: Input: mother Output: m*th*r

8.9.3 Give a � owchart to count the number of words in a sentence.

Example: Input: ‘Count the words’ Output: 3

IT-Practical-LB-Gr10 INK06.indb 235 2019/09/26 09:57

236 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.9 continued

8.9.4 Complete the algorithm given below by providing the missing pseudocode. The algorithm should accept an
encoded #-delimited string, search for the delimiter and display each data item below each other.

Line ← Enter Line
Length ← Length(Line)
Item ← ‘’
For k ← 1 to Length do begin
If (a) then
 Display Item
 Newline
 (b)
 Else
 (c)
End for

Example 8.6

Input: John Doe#27/06/2018#Accident on N2

Output: John Doe

 27/06/2018

 Accident on N2

NOTE: the delimiter is the ‘#’ sign.

8.9.5 Provide trace tables for your algorithms in 8.9.2 to 8.9.3 above. Trace using the given examples.

Example: Write Delphi code that will count the number of vowels in the text input. To write the Delphi code,
you must have a solution. Writing the Delphi code is a translation of your solution that can be in the form of
pseudocode or a � owchart.

The IPO table will assist you in formulating a solution because it breaks up the task into three smaller tasks
focussing on input, processing and output.

If the input is ‘Count the number of vowels’ then the output is 8.

Here is the IPO table:

INPUT PROCESSING OUTPUT

text count ← 0
For k ← 1 to Length(text)
 If text[k] in [a,e,i,o,u,A,E,I,O,U] then
 count ← count + 1 // code for a

running total
 endif
endfor

count

Component:

inputBox

Component:

MemoBox

Take note

The algorithm loops through the text and increases count if a vowel is found.

Note how the IN operator is used to check if the character at position k is a vowel.

Some of the questions you can ask when translating the solution into Delphi code includes:

● What are the variables and how are they declared?
● What are the data types for these variables?
● Where must count be initialised? Inside or outside the loop?
● How do I implement the for-loop?

IT-Practical-LB-Gr10 INK06.indb 236 2019/09/26 09:57

237TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Activity 8.9 continued

Here is the Delphi code:

 var
 sText: String;
 k: Integer;
 iCount: integer;
 begin
 redOutput.Clear;
Line 1: sText := InputBox('Question 1','Enter text: ','');
Line 2: iCount := 0;
Line 3: for k := 1 to Length(sText) do begin
Line 4: if sText[k] in ['a','e','i','o','u','A','E','I','O','U'] then
Line 5: iCount := iCount + 1;
 end;
Line 6: redOutput.Lines.Add('The text has '+IntToStr(icount)+'vowels');
 end;

Complete the trace table:

Line 1: sText = Count the number of vowels

Line iCount k k <= Length(sText) sText[k] sText in
[set of vowels]

Output

2 0

3 1 true

4 C false

3 2 true

4 o true

5 1

3 3 true

4 u true

5 2

Activity 8.10

Open the SearchChars_p project from the 08 – Search Characters folder.

8.10.1 Button [Question 1]

Complete the incomplete code for counting vowels as indicated in the example given above.

Input: Output:

Complete the code

Count the number of vowels Number of vowels: 6

 Number of vowels: 8

IT-Practical-LB-Gr10 INK06.indb 237 2019/09/26 09:57

238 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.10 continued

8.10.2 Button [Question 2]

Provide the missing code to display the consonants of the text input. Also display a * where a vowel is found.

Input: mother Output: m*th*r

 The cat sat on the mat Th* c*t s*t *n th* m*t

8.10.3 Button [Question 3]

Complete the code to count the number of words in a sentence. Consider the following:

● What character will you use in your test?
● Must the count be initialise to zero?

Input: Count the number of words Output: Number of words: 5

8.10.4 Button [Question 4]

Complete the code to fully implement
the given � owchart. The completed
program should display data items
encoded into a #-delimited string
below each other.

Example:

Input: John#27/06/2018#Injured
Output: John

 27/06/2018

 Injured

Stop

Start

True

True

Text ← John#27/06/2018#Injured
Item ← “

Output Item

k ← 1

Item ← Item + Text[k]

False

False

is:
k <= length(Text)

is:
Text[k] = #

k ← k + 1Item ← “

Output Item

8.10.5 Button [Question 5]

Complete the code to display the input text over two lines. Letters in the � rst line and all digits in the second
line. The lines must vertically break up the text. Removal of the digit must leave a space and the digit must
be below the space when displayed. Consider the following:

● Should string concatenation happen in both the TRUE and FALSE part of the IF-statement?
● Do you test for letters or digits?

Input: Sh1am9iel Dra5m9at Output: Sh am iel Dra m at

 1 9 5 9 1 9 5 9

Digits are replaced by spaces for display on the � rst level. The removed digits are displayed on the second
level immediately below the original position.

IT-Practical-LB-Gr10 INK06.indb 238 2019/09/26 09:57

239TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Activity 8.10 continued

8.10.6 Button [Question 6]

Complete the code to determine the sum of all the even digits in the input. The input string must consist of
digits only. No input validation is needed.

Input: 74658349 Output: 22

 5906065123084 26

8.10.7 Button [Question 7]

The prime digits are 2, 3, 5, and 7. Provide code to count the number of prime digits in a number string.

Input: 74658349 Output: 3

 5906065123087 5

Activity 8.11

Open the Delphi project CharFrequency_p located in the 08 – Find Character Frequency folder. The program
determines how often the selected letter is found in a paragraph. The result is displayed as a percentage of the total
number of characters in the paragraph.

memOutput

lstAlphabet

Given the following variables:

VARIABLE PURPOSE

sText Represents the paragraph

k Loop index

cLetter Selected letter

iTotal Total number of characters in Text

iCount How many times the Letter is found in Text

rFrequency The percentage of Letter in Text

IT-Practical-LB-Gr10 INK06.indb 239 2019/09/26 09:57

240 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.11 continued

8.11.1 Write down a Delphi code statement or expression for each of the following:

a. Read the selected letter from the list box.

b. Determine the total number of characters in the paragraph.

c. Initialise iCount to zero.

d. A FOR-loop to scroll from position 1 to the length of the paragraph.

e. Test if the character at the current position of the loop index is equal to the selected letter.

f. Increment iCount.

g. Calculate the frequency using iCount and iTotal.

8.11.2 Use the code in 8.11.1 to complete the code for [Frequency of Selected Letter] button.

 Input: a Output: Letter a: 8%

 b Letter b: 0%

CHANGING ONE OR MORE CHARACTERS IN A STRING
You can replace a character in a string as follows:

 var sVariable:string;
 iPosition:integer;
 cChar:char;
begin
 …
 sVariable[iPosition] := cChar;
 …
end;

The value in variable cChar is assigned to the character at position iPosition in the string variable sVariable.
The ‘old’ value in sVariable[iPosition] is overwritten by the value of cChar.

Changing a single character
sWord := 'Truck';

sWord[3] := 'i';
ShowMessage(sWord); // Trick

sWord[1] := 'B';
ShowMessage(sWord); // Brick

This technique can be combined with the technique to search for a character to replace either a speci� c
character or all instances of a character. The code snippet below shows how all instances of the character
‘o’ are replaced by the character ‘a’.

Replacing all matching characters
sPhrase := 'Hello, World!';
for i := 1 to Length(sPhrase) do
begin
 if sPhrase[i] = 'o' then
 sPhrase[i] := 'a';
end;
ShowMessage(sPhrase); // Hella, Warld!

IT-Practical-LB-Gr10 INK06.indb 240 2019/09/26 09:57

241TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Activity 8.12

Write a Delphi program to create a strong password based on the user’s name. Save the project as
StrongPassword_p in a folder named 08 – Strong Password.

Write code for the [Password] button to create a password as follows:

8.12.1 Receive the name of the user by using an Inputbox.

8.12.2 Determine the length of the name. If the name is shorter than eight characters, add as many of the
characters ‘#’, ‘$’, as required to make the length of the string eight.

8.12.3 Replace all the vowels in the word with the letter ‘Q’.

8.12.4 Replace ‘b’, ‘m’, and ‘z’ with the symbol ‘^’.

8.12.5 All other letters remain as they are.

8.12.6 Display the password.

 DELETING A CHARACTER
The � nal two techniques you will learn about both use the same general
algorithm. In the simplest terms, the algorithm works as follows:
● Store the position of the character you want to delete.
● Add all characters before this position to a new string called sStart.
● Add all characters after this position to a new string called sEnd.
● Set the existing variable equal to start + end.

This algorithm works by storing all the characters before the deleted
character and all the characters after the deleted character in new strings.
Since neither of these strings contain the deleted character, they can be
combined to form the starting word without the deleted character.

Figure 8.2: To delete a character, you can recreate the string without the character

Did you know

There are many different
algorithms that can be
used to delete or insert

characters. However, the
algorithm discussed in this
section is one of the easiest

algorithms to remember
and use.

IT-Practical-LB-Gr10 INK06.indb 241 2019/09/26 09:57

242 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

To see how this algorithm is used in practice, work through the following example.

Example 8.7 Deleting a character at a speci� c position

For this project, you will allow the user to delete any character from a string. To do this:

1. Open DeleteAndInsert_p Project from the 08 – Deleter and Inserter folder.

2. Create an OnClick event for the [Delete] button:

a. Declare � ve local variables: sPhrase , sStart, sEnd, iCount and iPosition.

b. Initialise sStart and sEnd as empty strings.

c. Read the string from the memo component and store the value in sPhase.

d. Read the position of the character that you want to delete from the edtPosition edit box and store the value
in variable iPosition.

e. Create a new string sStart to extract all the characters before the character that will be deleted, and another
string sEnd to extract all the characters found after the position of the deleted character:

for iCount := 1 to Length(sPhrase) do
begin
 if iCount < iPosition then
 sStart := sStart + sPhrase[iCount];
 if iCount > iPosition then
 sEnd := sEnd + sPhrase[iCount];
 //
end;

f. If sPhrase:=’Peter Pan Out� t’ and the position iPosition of the character that must be deleted is 8, then
once the loop is executed sStart will be assigned the value ‘Peter P’ and sEnd will be assigned the value
‘n Out� t’

g. Join sStart and sEnd and assign it to sPhrase.

3. Save and run the project.

4. Write code for the OnClick event of the [Insert] button to insert a character in the position where you deleted a
character. Look at the example on the next page before attempting this.

I NSERTING A CHARACTER/S
You can insert a character/s in a string at a given position.
Given:

 sPhrase := ’Today is looming’;

IT-Practical-LB-Gr10 INK06.indb 242 2019/09/26 09:57

243TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Suppose you want to insert the character ‘B’ at position 10 in the string sPhrase then follow the steps
outlined below:
● Create a string sStart by joining the characters in positions 1 to 9:

 sStart:=''; // empty string
 for icount := 1 to 9 do
 sStart := sStart + sPhrase[iCount];

● Create a string sEnd by joining the characters in positions 10 to length of sPhrase:

 sEnd := '';
 for iCount := 10 to length(sPhrase) do
 sEnd := sEnd + sPhrase[iCount];

● Join sStart, the new character to insert and the sEnd strings and assign to sPhrase:

 sPhrase := sStart+’B’+sEnd;

Here is the Delphi code:

Insert event
procedure TfrmDeleterAndInserter.btnInsertClick(Sender: TObject);
var
 sPhrase, sStart, sEnd, sChar : String;
 i, iPosition : Integer;
begin
 sStart := '';
 sEnd := '';
 sPhrase := memPhrase.Text;
 sChar := edtCharacter.Text;
 iPosition := StrToInt(edtPosition.Text);
 for i := 1 to Length(sPhrase) do
 begin
 if i < iPosition then
 sStart := sStart + sPhrase[i];

 if i >= iPosition then
 sEnd := sEnd + sPhrase[i];
 end;
 sPhrase := sStart + sChar + sEnd;
 memPhrase.Text := sPhrase;
end;

For enrichment

The setLength function can be used to change the length of a string.

For example:

setLength (sText, 6)

This sets the new length of sText to 6 characters. If the original length is more than 6 the characters from
position 7 onwards will no longer be part of the string. If the original length is less than 6, say 4 then space
for 2 more characters are reserved but not initialised. The two extra spaces contains garbage and can result
in errors. To avoid, this always initialise the extra space. Fill it with the space-character.

IT-Practical-LB-Gr10 INK06.indb 243 2019/09/26 09:57

244 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.13

8.13.1 Use the user interface below to complete the following tasks. Open the Activities_p project from the
08 - String Manipulation folder. Each of the buttons should be used for one of the questions.

a. Show how long your name is.

b. Insert the dash symbol (-) between each letter of
your surname.

c. Replace each vowel in your surname with the
asterisk character (*).

d. Show the position of all the ‘s’ characters in the
word ‘Mississippi’.

e. Delete the third character of any word entered
into the text box.

8.13.2 Open the program SmartphoneLogin_p from the 08 – Smartphone Login folder. Using this application,
update the ‘forgotten password’ clue so that it shows three randomly selected letters from your password.

Activity 8.14

8.14.1 Given

Text ← ‘—abcd—

POSITION 1 2 3 4 5 6 7 8
TEXT - - a b c d - -

Provide an algorithm to move the characters in position 3 to 6:
a. two places to the right b. two places to the left.

POSITION 1 2 3 4 5 6 7 8
TEXT a b c d - - - -

- - - - a b c d

In each case avoid assigning characters beyond the string boundary. The length of text must remain eight
characters long.

8.14.2 Given the string:

Word ← ‘characters’

Provide Delphi statements to do the following in order:

a. replace the letter ‘e’ with a letter ‘o’.

b. Given:

Text ← ‘ming_ ’,

Add the contents of the variable Text at position 5 in valuable Word.

8.14.3 Provide an algorithm to show how four characters are deleted from a 10-character string starting at position 2.

IT-Practical-LB-Gr10 INK06.indb 244 2019/09/26 09:57

245TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Activity 8.15

8.15.1 Complete the following:

a. Write a pseudocode algorithm that will replace a character at any position with a new character in a
string.

b. Provide a � owchart to replace all occurrences of a user selected character with a second character
provided by the user.

c. Now open the incomplete Delphi project, ReplaceChars_p located in the 08 – Replace Characters folder.

● Provide code for the [Replace Char] button to implement your algorithm in a).
● Provide code for the [Replace All] Button according to your solution in b).

8.15.2 Open the project MoveCharsRight_p from the 08 – Move Characters Right folder.

a. Provide algorithms for b) to d) below before coding the solutions.

b. Given the position of the character and the number of places it must be moved to the right, complete the
code for button [Move 1 char right].

c. Provide code for the button [Move Substring] that will move the text (between two positions inclusive) the
chosen number of places to the right.

d. Code the button [Create space to insert chars] so that all the characters from the position indicated
moves to the right the required number of places.

IT-Practical-LB-Gr10 INK06.indb 245 2019/09/26 09:57

246 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Activity 8.15 continued

8.15.3 Open the project MoveCharsLeft_p from the 08 – Move Characters Left folder.

a. Provide code for the button [Move 1 char Left] to move the character from the position indicated to the
number of places to the left.

b. Button [Move substring Left] moves consecutive characters between from and to positions to the left.

Activity 8.16

8.16.1 Run program WordGame_p.exe from the 08 – Word Game folder.

When the game starts Player 1 clicks the [Start Game] button to set the hidden word and enters the word
that must be hidden. The computer randomly selects a character from the hidden word and displays all
occurences of that character and ‘-‘ s for all other characters. Player 2 starts guessing the missing
characters. The computer determines if Player 2’s character is in the word and if found, displays it in the
correct position. This continues until the complete word is displayed.

a. Recreate the word game and in addition provide one improvement, for example, count the number of
guesses.

b. Change the user interface to include your improvement.

IT-Practical-LB-Gr10 INK06.indb 246 2019/09/26 09:57

247TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Manipulating strings

Activity 8.16 continued

8.16.2 In many languages the adjective follows the noun in the sentence structure.

‘Inenekazi ehlihle lingena eholweni’

A word for word translation for this isiXhosa sentence to English becomes:

‘The lady beautiful enters the hall’

The adjective ‘beautiful’ comes after the noun ‘lady’.

Given the sentence and the starting position of the adjective, develop a Delphi program to switch the noun
and adjective around so the sentence reads:

‘The beautiful lady enters the hall’

Open the project NounAdjectiveSwitch_p from the 08 – Noun Adjective Switch folder.

Complete the code for the [Switch Noun and Adjective] button to switch the noun and adjective.

IT-Practical-LB-Gr10 INK06.indb 247 2019/09/26 09:57

248 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

STRING MANIPULATION

var
 sName: String;
index: Integer
begin
 sName := ‘THANDI’;
 for index := 1 to Length(sName) do
 begin
 redOutput.Lines.Add(sName[index]);
 end;
end;

var
 sName: String;
 index: Integer
begin
 sName := ‘THANDI’;
 for index := Length(sName) downto 1 do
 begin
 redOutput.Lines.Add(sName[index]);
 end;
end;

The Output: The Output:
T

H

A

N

D

I

NOTE: the downto keyboard

I

D

N

A

H

T

sValue := ‘Hello, World!’;

cFirst := sValue[1]; // H

cSecond := sValue[2]; // e

sValue[13] := ‘?’; // sValue = ‘Hello, World?’

It is possible to access each
character in a string. To do this, you
can use the string variable with a
square bracket and a number
between the square brackets. The
number refers to the position of the
character you are referring to.

A String can consist of any number of
characters. Manipulating a string like
appending, inserting, replacing and
deleting one or more characters would
require that the computer can access the
individual characters in the string and has
some way to determine the length of the
string.

● sPhrase := ‘I love programming!’;
● iLength := Length(sPhrase); //19

Outcomes:
● Find all instances of a speci� c character.
● Change all instances of a character into a

different character.
● Delete a character from a string.
● Insert a character into a string.
● Determine the position of a character in a string
● Finding a character

In Delphi multiple small strings can be combined into a single
large string.

sFirstName := ‘Sharise’;

sSurname := ‘Marone’;

sName := sFirstName + ‘ ‘ + sSurname; // ‘Sharise Marone’

Individual characters in a string can be
accessed as follows:

VariableName[position of character]

One way to ensure that your spacing is correct when combining string is
to make use of the tab and newline characters.

Name Character Example

Tab #9 ‘M1:’ + #9 + ‘71%’;

‘Average:’ + #9 + ‘85%;’

//M1: 71%

//Average: 85%

Newline #13 ‘M1: 71%’ + #13 + ‘M2: 73%’;

//M1: 71%

//M2: 73%

Combining strings
and determining

the length of
a string

Manipulating
strings

Formatting
Characters

Scrolling through
a string

Summary

IT-Practical-LB-Gr10 INK06.indb 248 2019/09/26 09:57

249TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Summary

Consolidation activities Chapter 8: String manipulation

Answer to following short questions in writing:

1. Given the string: sText ← ‘Creative people will bene� t most from changes in technology’

a. True or false?

i. Delphi code Length(sText) will have a value of 60.

ii. Number of words in sText is equal to the number of spaces.

b. What is the word represented by sText[2] + sText[3]+sText[4] + sText[40] + sText[51]?

c. What is the effect of the assignment sText[31] := ‘u’ ?

2. Provide an algorithm in pseudocode to delete a word from a sentence.

3. Given the comma delimited text:

Western Cape#Theewaterskloof#43.5%#13/8/20187

Write an algorithm display the information as follows:

Western Cape

Theewaterskloof

43.5%

13/8/20187

4. Trace through the following algorithm to � nd out what it does:

 Sentence ← ‘password to enter secret room is opensesame’

 Word1 ← ‘’

 Word2 ← ‘’

 For k ← 1 to length (sentence)

 If k MOD 2 = 0 then

 Word2 ← Word2 + sentence[k]

 Else

 Word1 ← Word1 + sentence[k]

 Output Word1 + Word2

Complete the following programming challenges:

5. The program WordFindError_p should work as follows:

● The user enters a sentence in the edit box.
● The code in the [Start] button should do the following:

 Apply data validation to ensure that an empty string cannot be entered into the variable

 Save the sentence into a variable

 Find the length of the sentence

 Use a while loop to go through the sentence to � nd the number of spaces

 Test if the word is a space

 If it is not a space use a repeat loop to put the letters in a word

 Display the words in the memo component

 Display the number of letters in the sentence, number of spaces in the sentence and the number of
words in the sentence in a label as shown below.

The program does not work correctly.

a. Open the project WordFindError_p in the 08 – Word Find Error folder and run the program to see the
display.

b. Use a trace table to � nd the errors.

IT-Practical-LB-Gr10 INK06.indb 249 2019/09/26 09:57

250 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 8: String manipulation continued

c. Correct the errors and run the program.

d. Test your program with the words ‘This is going to be a great year’. The display should resemble the
image below.

6. A palindrome is text that reads the same from left to right and right to left, for example, level and 123321.

a. Write a program to determine if a word or number is a palindrome.

b. Save the project as PalindromeTest_p and save it in a folder named 08 – Palindrome.

7. The price for an advert in the Delphi Herald is R1.50 per word.

Create a program that will accept the text, determine the number of words and calculate the cost of the advert.
Save the project as AdvertCost_p in a folder named 08 – Advert Cost.

8. The format of a #-delimited string is as follows:

<School name>#<Excursion>#<Date>#<Group size>

Example: Wynberg Boys HS#Eskom: Koeberg Centre#2018-06-14#55

a. Open the pExcursionInfo project from the 08 – Excursion folder and complete the program.

b. Write a program that will accept the # delimited string and output the information in the format.

School name: <School name>

Excursion: <Excursion >

Date: <Date>

Number of learners: <Group Size>

School name: Wynberg Boys HS

Excursion: Eskom: Koeberg Centre

Date: 2018-06-14

Number of learners: 55

IT-Practical-LB-Gr10 INK06.indb 250 2019/09/26 09:57

251TERM 3 I CHAPTER 8 STRING MANIPULATION I UNIT 8.4 Summary

Consolidation activities Chapter 8: String manipulation continued

c. Some # delimited strings are already loaded in the ComboBox.

9. Upon analysis of large amounts of English text, the frequency of letters are as follows:

e t a o i n s h r d l u c

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3 4.0 2.8 2.8

m w f y g p b v k x j q z

2.4 2.4 2.2 2.0 2.0 1.9 1.5 1.0 0.8 0.2 0.2 0.1 0.1

These frequencies are used to decrypt code like the Caesar Cypher. Although the letters are substituted the
frequency remains the same.

For this problem we will add a monetary value to groups of letters on the basis that the least frequent letters are
more expensive.

 LETTER GROUP IN TABLE ABOVE AVERAGE FREQUENCY VALUE

(b, v, k, x, j, q, z) 0.6 R1666.67

(m, w, f, y, g, p) 2.2 R454.55

(s, h, r, d, l, u, c) 4.6 R222.22

(e, t, a, o, i, n) 8.5 R117.65

Open the NameValue_p project from the 08 – Name Value folder and complete the program.
The program must accept your full name and calculate the monetary value of your name according to the table
above. Use lowercase letters.

IT-Practical-LB-Gr10 INK06.indb 251 2019/09/26 09:57

252 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Consolidation activities Chapter 8: String manipulation continued

10. Pig Latin is a secret language formed by moving the � rst letter of a word to the end if the letter is a consonant.
The letters ‘ay’ is then added, for example, if the word is ‘must’, it becomes ‘ustmay’ – ‘m’ moved and ‘ay’
added. Vowels at the beginning are not moved to the end and ‘way’ is simply added at the end.

Write a program that will translate a sentence into Pig Latin. Save the project as PigLatin_p in a folder named
08 – Pig Latin.

11. Open the ScrollingBanners_p project from the 08 – Scrolling Banners folder and complete the program. The
program must allow the user to enter a message. The program must scroll the message as indicated below.

a. Left to right, disappearing on the right and re-appearing on the left. For example:

Road works ahead d Road works ahea ad Road works ahe

b. Exiting on the right of the top line and entering on the left of the line below, scrolling along the bottom line
and exiting on the right, � nally entering on the left of the top line. For example:

Road works ahead * Road works ahea **************** d ***************

**************** d *************** Road works ahead * Road works ahea

Run the ScrollingBanners_p.exe, enter a message and click the [Start] button to start the scrolling banners.

IT-Practical-LB-Gr10 INK06.indb 252 2019/09/26 09:57

253TERM 4 I CHAPTER 9 PAT PREPARATION

CHAPTER UNITS

Unit 9.1 Tools and techniques to create a software solution to a problem

Unit 9.2 A problem solving approach

Unit 9.3 Analysing user interfaces

Learning outcomes

At the end of this chapter, you should be able to:
● explain what problem solving is
● understand how to approach a programming problem
● explain and apply problem solving steps and techniques to a given problem
● use the correct problem-solving tools.
● understand how to use the correct tools, principles and techniques to do the PAT

INTRODUCTION

In Grade 10 you need to complete a programming project called the Practical
Assessment Task (PAT). The PAT is a software development project. You can use
the PAT to demonstrate your programming skills and your understanding of the
connections between the different content areas of solution development that
you have learnt about.

You need to demonstrate your knowledge and understanding of the software
development life cycle through analysis, design, coding and testing. You will also
have to demonstrate the effective use of the software design tools and techniques
which you have learnt.

You need to provide the following outputs:
● provide a brief description of the problem you will be solving
● discuss the research/investigation done regarding the project
● provide a brief description of the purpose and scope of your project
● a document in which the layout of your software design is shown
● a working Delphi program that implements the planned solution.

PAT PREPARATION 9
 CHAPTER

TERM 4

IT-Practical-LB-Gr10 INK06.indb 253 2019/09/26 09:57

254 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

You will be required to demonstrate and discuss your program during a debrie� ng
session.

PROVIDE

PROBLEM

Provide a brief description of
the problem you will be

solving

DISCUSS

DESCRIBE

Discuss the research /
investigation done regarding

the project

DESCRIPTION

RESEARCH

Provide a brief description of
the purpose and scope of

your project

DESIGN

PURPOSE

Provide a document in which
the layout of your software

design is shown

IMPLEMENT

LAYOUT

SOLUTION

Implement a working Delphi
program using the planned

solution

Figure 9.1: Outputs for the effective use of software design tools and techniques

In this chapter, you will learn how to approach the PAT. You will also learn some
additional skills you could use to enhance your project.

Take note

● The PAT is a
compulsory component
of the � nal end-of-year
examination for IT.

● The PAT counts 25% of
your � nal mark for IT. It
is important that you
produce work of a high
standard.

● You need to complete
your PAT before you
start the Grade 10
end-of-year
examination. Not
submitting your PAT or
any part of the PAT, will
mean that you will be
awarded a zero (“0”)
for the PAT component
of the examination or
the parts not submitted.

IT-Practical-LB-Gr10 INK06.indb 254 2019/09/26 09:57

255TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.1 Tools and techniques to create a software solution to a problem

When you want to create a software solution to a problem, there are certain tools and techniques that
support a professional product. There are also certain principles that you need to adhere to, to ensure that
your solution (app) is user-friendly.

TOOLS AND TECHNIQUES

GUI COMPONENTS
To ensure that your solution has a professional, user friendly appearance, it is important to plan the
graphical user interface (GUI) and to use the correct components. This year you have learnt to use the
most important components that allowed you to create simple user interface.

We are now going to look at a few other components that would be helpful to enhance your project’s user
interface.

COMPONENT DESCRIPTION EXAMPLE

BitButton Sometimes you want to use buttons such as,
[OK], [Cancel] or [Help], for your GUI. To help you
there is a button control that can include a
bitmap image on its face. This feature is called a
BitButton. You can choose from set styles or or
you customise how the button will look. These
buttons need very little or no coding at all, so
you can easily add them to your application.

To add a BitButton [Cancel]:

● Place a TBitBtn component on the form from
the Additional Palette

● Set the Kind property to bkCancel
● This will display:

● Double click on the button to create an
OnClick event

To create other BitButtons change the Kind
property as follows:

● bkCancel: A [Cancel] button.
● bkClose: A [Close] button that closes a form.
● bkNo: A [No] button.
● bkOK: An [OK] button.
● bkYes: A [Yes] button.

These buttons are shown in the example on
the right.

Tools and techniques to create a software solution
to a problem9.1

UNIT

IT-Practical-LB-Gr10 INK06.indb 255 2019/09/26 09:57

256 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

COMPONENT DESCRIPTION EXAMPLE

Panel The Panel component is used as a container for
the other components. Components are grouped
for a speci� c task.

To place a panel on a form:

● Select the TPanel component from the
Standard Palette and place on the form

● Use the pre� x pnl before the panel name
● You can resize the panel according to your

own speci� cations
● Place the components that you require on

the panel

An example of a panel requesting user
information is shown on the right.

PageControl Instead of using panels to organise related
information, you can use tabbed panes.

To create a tabbed pane:

● Select TPageControl from the Win32 panel
and place on the form

● Click the ellipse (…) in the Tabs property
and list the tab headings on separate line in
the String List Editor Dialog box

● For each heading, a tab sheet will be created
● Select a tab and place the required

component on it

The example on the right shows a PageControl
being used to record information about a player,
her team and her game.

Hint property Use the Hint property of a component to provide
a short message when the cursor is moved over
the component. The message should indicate
what is required for that component.

To create a hint on the TEdit component:

● Select the TEdit component
● Set the Hint property to the message that

you want
● Set the ShowHint property to true

The example on the right shows an Edit with its
Hint property set to the message ‘Enter your
name’ and its ShowHint property set to true.

IT-Practical-LB-Gr10 INK06.indb 256 2019/09/26 09:57

257TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.1 Tools and techniques to create a software solution to a problem

STORING AND RETRIEVING DATA
To store data permanently, you need to store data in a text � le on your computer. The kind of information
you can store:
● A list of usernames and passwords
● Statistics for your games (such as high scores and win percentages)
● User’s settings for your application.

If you want to store data permanently, then you need to save it to a � le.

You have already learnt how to save data to � les and read data from � les. When saving you use the
Delphi components that work with a list of strings (like the TListBox and TMemo). This is because these
components have built-in methods that allow you to save their items directly to a text � le, or to load data
from a text � le into the component. This is done using the following two commands.

FUNCTION DESCRIPTION

memName.Lines.SaveToFile('fi le.txt'); Saves the contents of a memo directly to a � le.

lbxName.Items.SaveToFile('fi le.txt'); Saves the contents of a list box directly to a � le.

memName.Lines.LoadFromFile('fi le.txt'); Loads the contents of a � le into a memo.

lbxName.Items.LoadFromFile('fi le.txt'); Loads the contents of a � le into a list box.

The example below shows how these commands can be used to create a simple text editor.

Example 1.1 Text Editor

To create a text editor:

1. Create a new project named TextEditor_p and save it in the folder 09 – Text Editor.

2. Create the following user interface. Take note, the large white box is a TMemo component.

IT-Practical-LB-Gr10 INK06.indb 257 2019/09/26 09:57

258 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example 1.1 Text Editor continued

3. Create a global variable called sFileName.

4. Create an OnClick event for the [Save] button.

5. Inside the OnClick event, read the text from the edtFileName component and assign it to the sFileName variable.

6. Add the � le extension .txt to sFileName

 sFileName := sFileName+'.txt';

Add the following statement to your event:

Save text from the memo component to a � le
memText.Lines.SaveToFile(sFileName);

7. Run the program, enter the � le name, type in the memo component and click on the [Save] button.

8. A text � le with the � le name that you speci� ed with a .txt extension will be created. The data from the memo
component will be saved in the text � le.

To load a information from a text� le to a memo component:

9. Create an OnClick event for the [Load] button and add the following code to it.

Load from � le method
sFileName := edtFileName.Text+'.txt';
memText.Lines.Clear; //OR memText.Clear; clears

//the memo component
memText.Lines.LoadFromFile(sFileName);

This will load the text from the speci� ed � lename into your memo component.

10. Save and test your application.

You should be able to create new � les or open existing � les by using the [Save] and [Load] buttons.

While the technique was used in this application to simply save and load text to a � le, it could also be used
with a listbox component.

PLANNING TOOLS AND TECHNIQUES
To make it easier to solve problems, there are four tools that you can use that help you with the different
steps.
● IPO tables
● TOE (Task, Object (component), Event) chart
● Algorithms and � owcharts
● User stories
● Acceptance tests

In this section, you will learn more about each of these tools.

IPO TABLE
For Input, Processing and Output (IPO) tables refer to chapter 4.

IT-Practical-LB-Gr10 INK06.indb 258 2019/09/26 09:57

259TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.1 Tools and techniques to create a software solution to a problem

TASK, OBJECT, EVENT (TOE) CHART
A Task Object Event (TOE) chart is a three-column chart that lists the tasks your application (or a part of
your application) will do, the object involved with that task, and any events that the object might require to
perform the task. The example below shows a TOE chart that could be used to create a smartphone login
screen.

TASK OBJECT EVENT

Get user information

User email address edtEmail

User password edtPassword

Verify user details and open application btnLogin OnClick

Provide password hint to user btnHint OnClick

Close application btnClose OnClick

 ALGORITHMS AND FLOWCHARTS
Refer to chapter 1 for algorithms and � owcharts.

USER STORIES
A user story is one or two sentences that are written by your product’s users that
explain what they want from your product. For example, your users might say
something like “I need an application that allows me to quickly encode passwords
on the Internet” or “The hardest part of being a teacher is setting up and
marking quizzes.”

After speaking to enough users, the programmer might have an entire list of user
stories. These stories help the programmer to understand the problem and can
be used to focus the programmer’s attention on the most important features.

Figure 9.2: A web application like Trello is good for recording user stories

Take note

You could also include
TOE chart elements in
your IPO table.

HOW TO WRITE GOOD
USER STORIES

https://www.youtube.com/
watch?v=tKSUokG3Y0w

IT-Practical-LB-Gr10 INK06.indb 259 2019/09/26 09:57

260 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

User stories help the programmer in a number of different ways:
● They make sure the programmer focuses on the user, not on his or her own

goals.
● They make it easier to divide work between different people. With user

stories, each person can take responsibility for one user’s story.
● Since stories describe what users want, not how to achieve it, they allow

programmers to come up with creative solutions to meet user’s needs.
● User stories can help motivate programmers, since every complete story is

tangible progress that has been made on the application, and there is at
least one happy user.

For these reasons, most programmers should try to interview some of their users
before starting to program their application. This can be as easy as asking your
mother, your sister and a few of your friends questions about what they would
want from your application and recording their answers.

A CCEPTANCE TESTS
Each user story must have an acceptance test. Acceptance tests are derived
from user stories. In acceptance testing, the product is tested to see if it solves
the problem and meets the project’s requirements. The program either passes
the test or fails. This determines if the program is ready to be of� cially released
and sold to customers, or if the program needs further development.

PROGRAMMING PRINCIPLES

NAMING CONVENTIONS
Use the naming convention used throughout the book.

DECLARATION OF VARIABLES
In Chapter 2 you learnt how to declare variables both locally and globally.

DATA VALIDATION
You learnt about data validation in Chapter 6.

GUI DESIGN PRINCIPLES
The user interacts with the program though the GUI. This includes the screens
the user sees, the buttons they press, the information they enter, the feedback
they receive, etc. The user experience is therefore important – it could determine
whether they will use the program or not.

PUT USERS IN CONTROL
● Allow them to correct mistakes or undo actions
● Make the user interface easy to use and master
● The user interface must be predictable for example always put the [Submit]

button in the same place on every screen
● Provide tool tips, hints or help for users
● Accommodate visually challenged users

IT-Practical-LB-Gr10 INK06.indb 260 2019/09/26 09:57

261TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.1 Tools and techniques to create a software solution to a problem

MINIMISE THE EFFORT
● Minimise the effort it takes to use the program
● Never ask user to enter the same information more than once
● Never ask users to complete tasks that do not bene� t them directly
● Use words and terms that are familiar with users
● Use visual cues to make the next step obvious
● Provide feedback to users

REDUCE COGNITIVE LOAD
● Cognitive load is the amount of mental processing required to use a product
● Chunking the sequence of information – that is information is input in some

chunks. For example, instead of inputting your cellphone number as a
10-digit sequence 0842123256, get the user to input the cellphone number
in the format 084 212 2356 using an input mask

● Reduce the number of actions for a required task
● Promote recognition over recall
● Provide visual cues

MAKE USER INTERFACE CONSISTENT
● User interface must be consistent, that is, if you have more than one screen

the look and feel of the screens must be consistent. For example
components should remain in the same place, be of the same size and have
the same colour/icons across screens.

● Buttons must work in the same way in one screen as in the other screens
for the same task. Generally, by convention, certain buttons are placed in
certain position on a screen. For example the [Forward] and [Backward]
button are placed at the bottom of the screen with the [Forward] button on
the right and the [Backward] button on the left.

IT-Practical-LB-Gr10 INK06.indb 261 2019/09/26 09:57

262 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Now that you understand what tools and techniques contributes, you can continue exploring a problem-
solving approach that can be used when you complete your PAT.

Problem solving refers to the process through which a solution is found to a problem. Programmers spend
most of their time solving problems, whether it is a small technical problem like a program bug or developing
a software solution for a speci� c use. For example: Uber is attempting to provide an affordable but � exible
transport solution to people without a car.

In this unit, you will learn more about the techniques used by programmers to solve pro blems.

PROBLEM SOLVING STEPS
In IT, problem solving consists of the following steps:
● Understanding the problem
● Developing a plan
● Implementing the plan
● Evaluating the solution
● Repeating the process

Let’s look at each of these steps in more detail.

The following sections demonstrates how the above steps are used to develop the IT PAT.

PROBLEM
You need to develop a program that encrypts messages using a cipher and decrypts messages using the
same cipher. For example, if you want to send an encrypted message to a user using your application,
that user must be able to use the program to decrypt the message.

You could also have a cipher game where others are challenged to crack the ciphers.

The program needs to use at least two different ciphers:
● Use at least one existing cipher (see list of examples below)
● Use at least one cipher that you developed yourself

A problem-solving approach9.2

UNIT

IT-Practical-LB-Gr10 INK06.indb 262 2019/09/26 09:58

263TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.2 A problem-solving approach

Here are some examples of existing ciphers for encrypting/decrypting messages:
● Various examples: http://www.simonsingh.net/The_Black_Chamber/

chamberguide.html
● Vigenere Cipher: http://sharkysoft.com/misc/vigenere/
● RSA Cipher: http://cisnet.baruch.cuny.edu/holowczak/classes/9444/

rsademo/
● Keyword Cipher: http://www.secretcodebreaker.com/keyword.html
● The hobby and art of cryptanalysis – that is, learning to break ciphers, see

http://cryptogram.org/
● Cracking ciphers: http://cryptogram.org/solve_cipher.html or

http://simonsingh.net/cryptography/cipher-challenge/the-ciphertexts/

Here are some ideas for developing your own cipher. Using:
● Binary numbers
● ASCII codes /symbols
● Standardised numbers such as ID numbers, ISBN numbers
● Calculations
● Mathematical processes such as check digits, LCM, etc.
● String processes
● Combining aspects of existing cipher s, etc.

UNDERSTANDING THE PROBLEM
The � rst step of the problem solving method is to understand the problem. To do
this, you � rst need to determine what the problem is about, then you need to
research the problem.

The following will help you manage your understanding of a problem:
● write down the main ideas and requirements of the problem
● read the problem and underline the key concept you need to understand in

order to interpret the problem clearly
● research what you do not understand.

Example:
You are one of the learners at IT Academy. The pass rate at this Academy is 60%.
Write a program to display a message “YOU HAVE PASSED” if your mark is 60%
or more.

DEVELOPING A PLAN
You spend hours creating an implementation plan, which might feel like a waste
of time, however in the long run it pays off when you start creating your application.
Rather than struggling to create a massive program that you do not understand,
the implementation plan breaks it into small, manageable tasks that can be
completed systematically. With each completed task and line of code that you
write, you are one step closer to having a working product.

REPRESENT THE PROBLEM

Once you develop your plan, you can represent the problem using diagrams,
tables, � ow charts, descriptions or any other method to indicate how you
understand the problem.

IT-Practical-LB-Gr10 INK06.indb 263 2019/09/26 09:58

264 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

For example: You want to develop a simple educational program for Grade 3
learners that will test how they are progressing in Mathematics and if they are
ready to progress to the next level (Questions can be like the ANA-type questions
set by the Department of Education). The application must give a speci� c user
feedback on how they are progressing with the content, the percentage of
quizzes they have completed, how many questions they have gotten right/wrong,
and possible steps to help them improve their scores in tests and quizzes.

PLAN DETAILED STEPS FOR EACH SCREEN

When you have a clear understanding of the functionalities that the program need
to provide, you can then determine the purpose of each screen. From there you
are able to plan each screen using a TOE chart, then plan the IPO table for each
screen. Finally start work on your application.

IMPLEMENTING THE PLAN
Once complete, you will now be ready to implement your plan. You can do this by:
● coding each screen in Delphi according to your planning.
● determining which code/constructs you will use to input data.
● determine which statements you will use to process or calculate the data.
● determine which statements you will use to display the output.
● � nally, compile the program, test it and correct any errors that may occur

during run-time.

TESTING THE PROGRAM
Once the program has been created, you need to test the program with extreme
cases of test data. Repeat this process until the program runs correctly and
provides the desired output. The problem-solving method does not end once you
have implemented your plan! You need to see if the plan has actually solved the
problem. Look back to your initial problem statement and discussions with the
users and compare your solution to their requirements.

EVALUATE THE SOLUTION (REFLECTING)
Always review your work by looking back to see how well you have solved the
initial stated problem. Re-read your original problem statement and determine if
you have reached the goal. Evaluate whether you need to make any changes to
the program, and if necessary, implement your changes and test your results.

REPEAT THE PROCESS
Not all solutions solve the problem. It is also possible for solutions to:
● Fail to solve the problem.
● Only partially solve the problem.
● Create new problems.

If your evaluation reveals any remaining problems, you can repeat the problem-
solving process, focusing on the new pr oblems.

IT-Practical-LB-Gr10 INK06.indb 264 2019/09/26 09:58

265TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.3 Analysing user interfaces

Analysing user interfaces9.3

UNIT

According to the principles of rapid application development, you should start with the user interface. By
the time you have placed all the elements, boxes and buttons for your application, the only thing left to do
is to code the events. Since there are only a limited number of buttons and interactive elements, there can
only be a limited number of events, which means you can systematically create small parts of your
program, without worrying too much about the big picture.

How do you take the � rst step and build a user interface? A good way to do this is to analyse existing user
interfaces, especially for applications that are similar to your application, and use their user interfaces as
a starting point. These user interfaces can be analysed in four steps:
● Take a picture of the screens of the user interface
● Break the screens down into their components
● Record how the user interacts with the application
● Draw a map showing how the user can navigate between screens

By analysing existing user interfaces, you will be surprised to see how many small features application
developers add to make their programs easier to use. You will also realise that many UIs that look extremely
complex are actually created using very simple components.

In the next section, you will use the four steps listed above to analyse an existing user inte rface.

STEP 1: RECORD THE SCREENS
For this example, we will analyse the smartphone user interface of the application UberEats. UberEats
allows users to order food from nearby restaurants and have it delivered to their homes.

The � rst step in analysing the application is to record the different screens used by UberEats. The images
below show nine screens from the UberEats app.

SPLASH SCREEN LOGIN SCREEN HOME SCREEN

IT-Practical-LB-Gr10 INK06.indb 265 2019/09/26 09:58

266 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

SEARCH SCREEN ORDERS SCREEN SETTINGS SCREEN

RESTAURANT SCREEN MEAL SCREEN CHECKOUT SCREEN

By analysing these screens, you can learn how they are created.

IT-Practical-LB-Gr10 INK06.indb 266 2019/09/26 09:58

267TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.3 Analysing user interfaces

 STEP 2: BREAK THE SCREENS DOWN
In most cases, it is not worth breaking all the screens into their individual components. Instead, you may
choose one or two screens to analyse. For this example, we will analyse the Search screen, as a similar
screen can be used for many different applications.

Image Components
on a scrollable panel

Label

Icons on a panel

Edit

Broken down like this, the screen is not too dif� cult to recreate. In fact, you know how to create almost all
the elements on the screen already! Creating a similar screen for your own user interface is therefore
simply a matter of placing all the components in the correct positions.

 STEP 3: RECORD THE INTERACTION
The third step is to record how the program works and what happens when you click on the different
buttons. While it is dif� cult to say what precisely is happening in the code, you can try to guess how the
main elements work.

For example, looking at the Search screen from the previous step, there are three ways for users to
interact with this screen:
● They can enter a search query at the top of the screen
● They can click on one of the category images
● They can navigate to a different screen using the panel at the bottom.

IT-Practical-LB-Gr10 INK06.indb 267 2019/09/26 09:58

268 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

For the search textbox, you will need to create a search algorithm.

Figure 9.3: The Search Results page

What happens when users click on one of the categories? In UberEats, the
program simply searches for the category name, returning the same results as if
the user entered the category name. This means the code for these buttons is
easy to create, since it can reuse the search algorithm code created already.

When the users click on one of the navigation buttons at the bottom of the
screen, the program simply swaps to the selected screen. Once these screens
have been created, coding the buttons so that they swap to the correct screen is
easy!

Did you know

You will learn more about
working with databases in

Grade 11.

IT-Practical-LB-Gr10 INK06.indb 268 2019/09/26 09:58

269TERM 4 I CHAPTER 9 PAT PREPARATION I UNIT 9.3 Analysing user interfaces

S TEP 4: MAP THE NAVIGATION
Once you have recorded how the interaction works on the important pages, you
can map how users swap between different screens.

The UberEats application is a complex application with more than 20 different
screens and almost all the screens linking to the other screens. However, a
simpli� ed view of the screens can be drawn as shown below.

Close App

Home Settings

Orders

Restaurant

Meal

Open App Splash Logon

Registered No

Yes

Sign-up

Search

Checkout

Addresses

Figure 9.4: Simpli� ed � ow chart for the navigation of UberEats

Now that you understand how the UberEats user interface works, you can use
the relevant concepts in your own programs. The more user interfaces you
analyse, the more ideas you will have for your own programs!

IT-Practical-LB-Gr10 INK06.indb 269 2019/09/26 09:58

270 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

YOUR SOFTWARE DEVELOPMENT PROJECT

PAT PREPARATION

Storing and retrieving data
Delphi makes it possible to
read and write data to and
from Text � les (.txt).

GUI components
The Delphi Tool Palette
contains hundreds of
different components that
can be used in different
scenarios.

E.g. Button, Label,
PageControl, etc.

Problem solving steps
● Understanding the problem

 User stories

● Developing a plan
 Represent the problem

 Plan detailed steps for each
screen

● Implementing the plan
● Evaluating the solution
● Repeating the process

GUI design principles
● Put users in control
● Minimise the effort
● Eliminate useless efforts
● Give visual cues
● Give feedback
● Be consistent
● Accommodate all users

Programming principles
● Naming conventions
● Declaration of variables
● Data validation

Analysing user interfaces
● Record the screens
● Break the screens down
● Record the solution
● Map the navigation

Planning tools and techniques
● IPO tables
● TOE charts
● Algorithms and Flowcharts
● User stories
● Acceptance tests

Tools and Techniques
to create a software
solution to a problem

The PAT

Analysing user
interfaces

A problem-solving
approach

Consolidation

IT-Practical-LB-Gr10 INK06.indb 270 2019/09/26 09:58

271ANNEXURE A I Installing the Delphi IDE

Different programming languages use different applications to create programs.
Some languages can be programmed using a simple text � le, others can be
programmed from your web browser, while a third group of languages require an
integrated development environment (or IDE) to create code. Delphi falls in the
third group and in this book, we will use an IDE called Embarcadero RAD Studio
to create programs. This means that, just like you would open Microsoft Excel to
create a new spreadsheet, you will open Embarcadero RAD Studio whenever
you want to create a Delphi application.

Embarcadero RAD Studio helps you to create new applications more easily by:
● Converting (or compiling) the lines of code into a usable program
● Giving you the tools needed to create a user interface
● Helping you to refer to the correct names and properties
● Highlight syntax elements to make the code easier to read
● Highlighting and � xing code mistakes
● Allowing you to debug your program
This saves you time and effort when creating programs and allows you to quickly
create new programs. The next example will show you how to install RAD Studio
on your computer.

Example Downloading the Delphi IDE

To download the Delphi IDE:

1. Open your computer’s web browser.

2. Open Embarcadero’s website at www.embarcadero.com

3. At the top of the window, hover over the Free Tools menu and select
Delphi Community Ed.

4. Click on the [Get Community Edition Free] button.

Take note

The exact layout of the IDE
may change over time, so
follow the prompts on the
screen if the layout is
different to what is being
shown here.

New words

compiling – to convert (a
program) into a machine-
code or lower-level form in
which the program can be
executed

syntax – the language
rules used by the
programming language

debug – to identify and
remove errors from
computer hardware or
software

Did you know

You must use a valid email
address when registering. A
unique serial number will
be sent to your email
address, and you will not
be able to install the RAD
Studio without this serial
number.

ANNEXURE
A Installing the Delphi IDE

IT-Practical-LB-Gr10 INK06.indb 271 2019/09/26 09:58

272 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example Downloading the Delphi IDE continued

5. Click on the [Register Here] button to create an Embarcadero account.

6. Fill in the questionnaire with your personal details. If you do not have your own email
account, follow the QR code in the margin to learn how to create one.

7. Click on the [Download Now] button to download the RAD Studio install � le.

Congratulations, you have just downloaded the RAD Studio installer! You are now
ready to begin installing RAD Studio.

Example Installing the Delphi IDE

To install the Delphi IDE:

1. Open the RAD Studio installer you downloaded in the previous example.

2. Tick the checkbox to agree with the RAD Studio license agreement and privacy
policy then click Next.

3. Select the option I already have a product serial number then click Install.

4. While the program installs, open your email application and open the email from
Embarcadero-licensing.

Take note

The exact layout may
change over time, so follow
the prompts on the screen
if the layout is different to
what is being shown here.

IT-Practical-LB-Gr10 INK06.indb 272 2019/09/26 09:58

273ANNEXURE A I Installing the Delphi IDE

Example Installing the Delphi IDE continued

5. Select the serial number from the email and press CTRL + C to copy it to your
clipboard.

6. When the Embarcadero Product Registration window opens, select the Serial
Number textbox and press CTRL + V on your keyboard. You should now see the
serial number in the textbox.

7. Click on the [Register] button to continue the installation.

8. In the RX RAD Studio Platform Selection window, select Delphi Windows 32-bit
Community and Delphi Android Community and click Continue.

9. Click on the [Install] button to begin downloading and installing the application.
Once the installation is complete, you can start using RAD Studio!

Congratulations, you have just installed Embarcadero’s RAD Studio! For the rest
of the year, you will use this application to code programs and games!

IT-Practical-LB-Gr10 INK06.indb 273 2019/09/26 09:58

274 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

Example Opening the Delphi IDE

To open the Delphi IDE:

1. Open the Windows Start Menu and search for “RAD Studio”.

2. Open the RAD Studio desktop application from the Start Menu.

3. Select whether you want to use a light theme (with a light background and dark text)
or a dark theme (with a dark background and light text). You can always change
your theme at a later stage.

4. Click on the [Get started!] button to open RAD Studio.

Congratulations, you are ready to start programming!

Did you know

Most programmers prefer
to use dark themes when
coding. However, to make
the pictures easier to see,
this textbook will use a light
theme.

IT-Practical-LB-Gr10 INK06.indb 274 2019/09/26 09:58

275ANNEXURE B I The ASCII table

ANNEXURE
B The ASCII table

In 1963, the American Standards Association published a table which linked 127 different letters and symbols
to numbers. This table was called the ASCII table, which is short for the American Standard Code for Information
Interchange.

With ASCII, the � rst 32 characters in the table are programming characters that cannot be shown on the screen.
These include characters like a carriage return character (which shows where a new line should start) and a
horizontal tab character which added some horizontal space. The full list of these 32 programming characters
is given in the table below.

Table 10.1: The programming characters

DECIMAL
NUMBER

CHARACTER NAME
DECIMAL
NUMBER

CHARACTER NAME

0 NUL Null 16 DLE Data Link Escape

1 SOH Start of Heading 17 DC1 Device Control 1

2 STX Start of Text 18 DC2 Device Control 2

3 ETX End of Text 19 DC3 Device Control 3

4 EOT End of Transmission 20 DC4 Device Control 4

5 ENQ Enquiry 21 NAK Negative Acknowledgement

6 ACK Acknowledgement 22 SYN Synchronous Idle

7 BEL Bell 23 ETB End of Transmission Block

8 BS Backspace 24 CAN Cancel

9 HT Horizontal Tab 25 EM End of Medium

10 LF Line Feed 26 SUB Substitute

11 VT Vertical Tab 27 ESC Escape

12 FF Form Feed 28 FS File Separator

13 CR Carriage Return 29 GS Group Separator

14 SO Shift Out 30 RS Record Separator

15 SI Shift In 31 US Unit Separator

IT-Practical-LB-Gr10 INK06.indb 275 2019/09/26 09:58

276 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

The next 95 characters are all visible characters that you can see on the screen.

Table 10.2: Visible characters

DECIMAL CHARACTER DECIMAL CHARACTER DECIMAL CHARACTER DECIMAL CHARACTER

32 SPACE 61 = 90 Z 119 w

33 ! 62 > 91 [120 x

34 “ 63 ? 92 \ 121 y

35 # 64 @ 93] 122 z

36 $ 65 A 94 ^ 123 {

37 % 66 B 95 _ 124 |

38 & 67 C 96 @ 125 |

39 ‘ 68 D 97 a 126 ~

40 (69 E 98 b

41) 70 F 99 c

42 * 71 G 100 d

43 + 72 H 101 e

44 , 73 I 102 f

45 - 74 J 103 g

46 . 75 K 104 h

47 / 76 L 105 i

48 0 77 M 106 j

49 1 78 N 107 k

50 2 79 O 108 l

51 3 80 P 109 m

52 4 81 Q 110 n

53 5 82 R 111 o

54 6 83 S 112 p

55 7 84 T 113 q

56 8 85 U 114 r

57 9 86 V 115 s

58 : 87 W 116 t

59 ; 88 X 117 u

60 < 89 Y 118 v

The � nal 127th character is the DELETE character, which is used when something needs to be removed
or deleted.

IT-Practical-LB-Gr10 INK06.indb 276 2019/09/26 09:58

277ANNEXURE C I Naming conventions of components

COMPONENT NAME PREFIX ICON BRIEF DESCRIPTION

Standard Group

Button btn Most used to activate an action.

Label lbl Commonly used to display information.

Edit edt Used for single line input, but also displays information.

Memo mem * Multiple line display organized in lines.

Panel pnl A container hosting other components.

List Box lst Multiple line display. Able to display left aligned columns.

Radio Button rad Toggles selection.

Radio Group rgp Grouped Radio buttons – only one selectable.

Combo Box cmb Multiple line capturing. Selection of item through drop-down.

Check Box chk Toggles selection.

Additional Group

BitButton btt Button with icon - used to activate actions.

Image img Component to host pictures (bitmaps, jpgs).

Shape shp * Basic shape like circle, rectangle or ellipse.

Win32

Page Control pgc Special page component hosting tab sheets.

System Group

Timer tmr * Count down timer – initializing action as count-down reaches 0.

Samples Group

Spin Edit sed Integer input component with pre-set range to select from.

Data Controls Group

Form frm The initial Form – not categorised under any group.

Naming conventions of componentsC
ANNEXURE

IT-Practical-LB-Gr10 INK06.indb 277 2019/09/26 09:58

278 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

 Glossary

A

algorithm an ordered list of steps used to

accomplish a task or solve a problem

algorithmic structures different structures and

techniques that you can use to improve and

simplify an algorithm

array an array is a sequence of data items of

the same type. It is made up of a list of other

variables, such as strings or integers

B

BODMAS Brackets, Orders, Division,

Multiplication, Addition and Subtraction

Boolean variable contains only one of two values:

TRUE or FALSE

C

compiling converting (a program) into a machine-

code or lower-level form in which the program

can be executed

concise giving a lot of information clearly and in a

few words

conditionals tell a program to execute different

actions depending on whether a condition is

true or false

D

debug to identify and remove errors from

computer hardware or software

double variable contains any positive and/or

negative numbers (including decimal numbers)

E

event-driven an event-driven program is one that

largely responds to user events or other similar

input

exponentially more and more rapidly

F

factor any number that can be divided into

another number (the multiple) without leaving a

remainder

feedback whenever a user interacts with an

application, they should receive feedback that

acknowledges the interaction and informs them

of what’s happening

� le a container in a computer system for storing

information

� ow chart a tool that is used to show visually how

an algorithm works

H

hard coded data or parameters � xed in a program

in such a way that they cannot be changed

without modifying the program

hotkey one or more keys used to perform a menu

function or other common functions in an

application

I

implementation plan step-by-step guide,

describing how to solve the problem

input validation a technique used by

programmers to check the user’s input before

processing it

integer contains any positive or negative whole

number (i.e. a number without a decimal)

integrated development environment (or IDE)

a programming environment integrated into

a software application that provides a GUI

builder, a text or code editor, a compiler and/or

interpreter and a debugger

iteration repetition

L

list allows you to store a large number of elements

which can be accessed using an index and

which must all be of the same type

logic error these errors occur when there is a

logical error or design problem in your program

loop a sequence of an instruction that is continually

repeated until a certain condition is reached

M

mathematical operators the symbols used to tell

Delphi to add, subtract, multiply or divide two

numbers

method (Delphi) a method is a function that is

programmed into an object (such as a label or a

string) by the creators of Delphi

mnemonic a tool to help remember facts or a

large amount of information

IT-Practical-LB-Gr10 INK06.indb 278 2019/09/26 09:58

279INFORMATION TECHNOLOGY I GRADE 10 I Practical Book I Glossary

N

noun–verb analysis a planning technique used

to analyse a problem statement

O

object-oriented a software programming model

constructed around objects

P

problem solving problem solving refers to the

process through which a solution is found to

a complex problem

problem statement a concise description of an

issue to be addressed or a condition to be

improved upon

R

rapid application development (RAD)

a programming system that enables

programmers to build working programs

quickly

runtime error this occurs when you ask your

program to do a task that is either impossible

or is impossible under certain circumstances

S

string variable made up of a sequence of

numbers, letters and symbols

syntax refers to the speci� c rules of a language

syntax error occurs when you break the rules

of the programming language

T

toggle to swap between two stages (ON/OFF)

trace table a technique that can be used to test

an algorithm. It helps you to � nd out if your

answer is correct

U

user interface (or UI) refers to the way in which

users interact with a computer

V

variable a value that can change, depending on

conditions or on information passed to the

program

variable scope the scope of a variable refers

to the sections of a program in which that

variable is available

visual cues a visual signal and reminder of

something. It helps users to understand

where they are in the application, what they

are doing, how the application works and

what is expected of them next

W

work in place algorithms that do all their

calculations without taking up any additional

space in memory

work out-of-place algorithms that need to

make copies of the items they are working

with in memory

IT-Practical-LB-Gr10 INK06.indb 279 2019/09/26 09:58

280 INFORMATION TECHNOLOGY I GRADE 10 I Practical Book

QR Code list

You can use the QR codes on these pages to link to online content for further
information on these topics.

Introduction
WHAT MOST SCHOOLS DON’T TEACH ... iv

Chapter 1
WHAT IS BETA TESTING? .. 4

Chapter 3
TOP TEN DISASTROUS SOFTWARE BUGS ... 54

Chapter 4
LEARNING ABOUT ORDER OF OPERATIONS ... 63

Chapter 7
A COMPUTER SCIENCE QUESTION ... 153

Chapter 9
HOW TO WRITE GOOD USER STORIES .. 259

IT-Practical-LB-Gr10 INK06.indb 280 2019/09/26 09:58

