
CAPS

INFORMATION
TECHNOLOGY
INFORMATION
TECHNOLOGY
INFORMATION
TECHNOLOGY

Practical Book

IT-Practical-LB-Gr11.indb 1 2019/10/02 10:13

MTN South Africa, through MTN SA Foundation, is a proud supporter of the CAT and IT digital books.

As an organisation rooted in technology, we believe in providing a new bold digital world to communities we

operate in. This unique digital book provides the fundamental knowledge necessary for a sound grounding

from which to make practical use of the complete and indispensable application-oriented information

regarding Computer Applications Technology (CAT) and Information Technology (IT). It is a foundational

reference for today’s secondary school learners and teachers alike - as well as for the next generation of CAT

and IT students.

Information Technology Practical Book Grade 11

ISBN 978-1-928388-53-1

First published in 2019 © 2019. Copyright in the text remains with the contributors.

Quality Assurance team for Information Technology

Allison Philander, Carina Labuscagne, David Peens, Denise van Wyk, Edward Gentle,
Jugdeshchand Sewnanen, Julian Carstens, Magdalena Brits, Shamiel Dramat,

Shani Nunkumar and Zainab Karriem

Restrictions

You may not make copies of this book in part or in full – in printed or electronic or audio or video form – for a
pro� t seeking purpose.

Rights of other copyright holders

All reasonable efforts have been made to ensure that materials included are not already copyrighted to other
entities, or in a small number of cases, to seek permission from and acknowledge copyright holders. In some

cases, this may not have been possible. The publishers welcome the opportunity to redress this with any
unacknowledged copyright holders.

IT-Practical-LB-Gr11.indb 2 2019/10/02 10:13

Contents

Term 1

 Chapter 1 Grade 10 Revision and Mathematical
Functions

Introduction ... 1

Unit 1.1 Errors, debugging and mathematical methods........... 2

Unit 1.2 Mathematical methods ... 6

Consolidation activity.. 13

 Chapter 2 Nested loops

Introduction ... 19

Unit 2.1 Nested Loops ... 20

Unit 2.2 Using nested loops .. 26

Unit 2.3 Creating shapes using nested loops 34

Consolidation activity.. 37

Term 2

 Chapter 3 Arrays

Introduction ... 41

Unit 3.1 Arrays ... 42

Unit 3.2 Searching and sorting arrays .. 55

Unit 3.3 Parallel arrays .. 64

Consolidation activity.. 67

 Chapter 4 String and date manipulation

Introduction ... 69

Unit 4.1 Built-in string methods ... 70

Unit 4.2 Delimited strings ... 86

Unit 4.3 Built-in Date-Time methods... 90

Consolidation activity.. 97

Term 3

 Chapter 5 Text � les

Introduction ... 101

Unit 5.1 Introduction to text � les .. 102

Unit 5.2 Reading from a text � le ... 106

Unit 5.3 Writing to a text � le .. 112

Unit 5.4 Creating reports .. 121

Consolidation activity.. 124

 Chapter 6 User-de� ned methods

Introduction ... 129

Unit 6.1 Introduction to user-de� ned methods 130

Unit 6.2 Procedures .. 132

Unit 6.3 Functions .. 144

Unit 6.4 Basic input validation techniques .. 148

Consolidation activity.. 152

Term 4

 Chapter 7 User interfaces

Introduction ... 155

Unit 7.1 Multi-form user interfaces ... 156

Unit 7.2 Dynamic Instantiation of objects .. 162

 Chapter 8 Databases

Introduction ... 167

Unit 8.1 Creating a database .. 168

Unit 8.2 Connecting to a database ... 172

Unit 8.3 Reading data from a database .. 178

Unit 8.4 Writing data to a database .. 182

Unit 8.5 Manipulating data .. 188

Consolidation activity.. 198

Annexure A – Grade 10 Revision 201

Annexure B – Naming convention of components 238

Annexure C – Programming and visible characters 240

Glossary 243

QR Code list 245

IT-Practical-LB-Gr11.indb 3 2019/10/02 10:13

Dear Learner
 Welcome to the IT Practical Grade 11 textbook, and welcome to programming.

If this is your � rst time learning how to program, don’t worry. This textbook has been designed to teach anyone –
regardless of experience – how to program. If you follow along with all the examples then you will be an
experienced programmer who has written more than 50 programs by the end of this book.

Programming and programming languages, much like real languages, can only be learned through practice.
You cannot sit at home and learn to speak French from a textbook. In the same way, you cannot read this book
and hope to be a programmer at the end of it. Instead, you will need to write every bit of code and create every
program shown in this book. Even if all you do is follow the steps of the examples on your own computer, you
will learn how to write code. Once you have mastered the code, you will be able to comfortably use it in your
own programs.

For you to master programming, try to work through as many of the programs given to you. Each program has
been designed to both teach you new concepts and reinforce existing concepts. The book will start by teaching
you how to create simple programs. However, by the end of the book you will be creating useful programs and
fun games to play.

Programming is not only about knowing and using the programming language. There are also important
theoretical concepts that you will need to understand, and planning and problem-solving tools that you will need
to master. The best-coded program in the world will not be useful if it solves the wrong problem. This book has
therefore been divided into the following chapters:
● Chapter 1: Errors, debugging and mathematical methods
● Chapter 2: Nested loops
● Chapter 3: Arrays
● Chapter 4: String and date manipulation
● Chapter 5: Text � les
● Chapter 6: User-de� ned methods
● Chapter 7: User interfaces
● Chapter 8: Databases

Before getting started with algorithms, watch the video in the QR code.

WHAT MOST SCHOOLS
DON’T TEACH

https://www.youtube.com/
watch?v=nKIu9yen5nc

IT-Practical-LB-Gr11.indb 4 2019/10/02 10:13

To give you the most opportunities to learn, this book will give three types of programming activities:

Activities

Activities are programs that your teacher can give to you as classroom activities or homework. With these
programs, you will only be assessed on how well your program works, so use your creativity to come up with
a solution!

5term 1 I Chapter 1 Grade 10 revision and MatheMatical Functions I Unit 1.1 errors, debugging and validation

IMPLEMENTATION OF INPUT VALIDATION
Input validation can be implemented in several different ways:
● One way to implement input validation is to inform the user of the problem

before they try to process the data. This could be in the form of an error
message or a disabled button with an error message.

● A second way of implementing input validation is to check the data before it
is processed. With this implementation, you build certain checks or
conditional statements into your program to ensure that you do not process
incorrect data. When these statements identify incorrect data, you send a
message informing the user of the problem.

Activity 1.1

1.7.1 What is the difference between syntax, runtime and logic errors?

1.7.2 Give two examples of each of the following errors:

a. Syntax errors

b. Runtime errors

c. Logic errors

Examples

Examples will guide you through the creation of a program from start to � nish. All you need to do with examples
is to follow the step-by-step guidance provided to you.

Guided activities

Guided activities have a program
that you need to create on your
own. Your teacher will provide
you with the solution. These
solutions should be used as an
opportunity to compare your
program, and to see where you
may have made errors or left
something out.

34 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

You can create simple geometrical shapes using special characters such as ‘*’
or digits.

Example 2.1 Create the shape below using the special character ‘*’

We know that there are six rows and each row has 6 *s. The code to draw this shape:

Line 1: for i := 1 to 6 do
Line 2: begin
Line 3: sLine := ’’;
Line 4: for j := 1 to 6 do
Line 5: sLine := sLine +’*’;
Line 6: memDisplay.Lines.Add(sLine);
Line 7: end;

Note:

● Line 1: The outer i-loop will run six times because there are six rows.
● Line 3: String sLine is set to null for each row.
● Line 4-5: In each row, 6 *’s must be joined together.
● Line 6: Display the string sLine before moving to the next row.

Example 2.2 Creating a shape

We know that there are six rows and each row has 6 *s. The code to draw this shape:

*
**

The code to create this shape:

Line 1: for i := 1 to 5 do
Line 2: begin
Line 3: sLine := ’’;
Line 4: for j := 1 to i do
Line 5: sLine := sLine +’*’;
Line 6: memDisplay.Lines.Add(sLine);
Line 7: end;

Creating shapes using nested loops2.3

UNIT

22 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 2.1

You need to develop a multiplication table for a primary school learner as shown below:

1 × 1 = 1 2 × 1 = 2

1 × 2 = 2 2 × 2 = 4

1 × 3 = 3 2 × 3 = 6

You are required to create the 1 times and 2 times multiplication table. In the 1 times multiplication table, you only need
to find the product of 1 multiplied by a multiplier from 1 to 3. This is also true for the 2 times multiplication table.

Let’s create an algorithm and flowchart for the problem.

ALGORITHM FLOWCHART

for I = 1 to 2
begin

for J = 1 to 3
begin

 Answer = I* J
 Display I,’*’, J, ‘=’, answer

end
end

The I-loop is the outer loop.

The J-loop is the inner loop.

The I-loop will run twice.

The J-loop will run three times.

The statements within the J-loop will be executed
six times.

Start

1

2

3

4

5

6

7

8

I← 1

J ← 1

I← J + 1

J ← J + 1

Answer ← I * J

Stop
False

False

Display
I, '*', J, '=', Answer

I <= 2

J <= 3

The nested loop executes in the following manner:

● When the outer loop is executed for the first time, it triggers the execution of the inner loop. Control is transferred
from the outer loop to the inner loop. The inner loop executes from its initial value to its end value and control is
transferred back to the outer loop.

● For each change of value of the outer loop value, the inner loop is triggered. This process continues until the outer
loop reaches its end value.

● Therefore in the example above, the inner loop will be triggered twice and for each trigger, the inner loop is executed
three times.

IT-Practical-LB-Gr11.indb 5 2019/10/02 10:13

‘Take note’ and ‘Did you know’ boxes

The boxes provide extra, interesting content
that might caution you to ‘take note’ of
something important; or give you additional
information. Note that the content in the
‘Did you know’ boxes will not be part of
your exams.

Consolidation activities

This is a revision activity based on what you have covered in the chapter. Take time to answer the questions on
your own. You teacher may also use these to assess your performance during class.

QR Codes, Videos and Screen captures

These will link you to online content. When you
are in the eBook, you can easily access the links.

12 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 1.9

1.9.1 Open the SquareCubeRoot_p project and create an OnClick event for the
[Calculate] button to do the following:
● Generate a random number in the range 10 to 20 (inclusive).
● Display the random number in the EditBox.
● For each number from 1 to the random generated number, determine the

square, cube and square root of the number. Tabulate the output. Display the
number, its square,cube and square root with appropriate messages. Numeric
values must be formatted to two decimal places.

● Save and run the project.

1.9.2 Open the CircleAreaCircum_p project and create an OnClick event for the
Calculate button to read the radius of a circle and calculate and display the radius,
area and circumference of the circle. The formulae to calculate:

● Area : π r 2

● Circumference : 2π r
Save and run your program.

1.9.3 Open the LearnerAlphabet_p file from your disk. A letter of the alphabet is
allocated in the following manner to each learner:

Learner 1: Z Learner 2: X

Learner 3: V Learner 4: T ….

Do the following:

● Create an OnCreate event to initialise variables for learner number and the letter
of the alphabet that will be assigned to the first learner. Display the details for
the first learner.

● Create an OnClick event for the Generate button to generate and display the
next line of the sequence.

Take note

If you cannot see all the
lines that you have
generated in the Memo
component, then you need
to set the ScrollBars
property to ssVertical.

Take note

If you cannot see all the
lines that you have
generated in the Memo
component, then you need
to set the ScrollBars
property to ssVertical.

2 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

1.1

Programming errors can generally be grouped into three categories: syntax
errors, runtime errors and logic errors.

Syntax refers to the rules of the programming language. For example, in Delphi,
this includes the rules that all statements have to end with a semicolon and that
the colon-equals operator (:=) is used to assign values. Syntax errors occur when
you break the rules of the programming language.

Common syntax errors include:
● Leaving out a semicolon at the end of a statement.
● Adding a semicolon at the end of a line which is not the end of a statement

(for example, in an IF-THEN-ELSE statement).
● Leaving out the command “var” when declaring variables.
● Assigning a variable using the equals sign.
● Making a typing mistake in the name of a variable.
● Not surrounding strings with the single quotation marks.
● Supplying variables to a function in the incorrect order or supplying an

incorrect number of variables to a function.

With Delphi, RAD Studio will provide you with information on the error in the
Structure panel at the top left Code screen, as well as in the compiler when you
try to run the program. Double clicking on the mistake in the Structure panel will
jump to the line with the problem.

Figure 1.1: The Structure panel will inform you of most syntax mistakes

Runtime errors occur when you ask your program to do a task that is either
impossible or is impossible under certain circumstances. In most instances,
runtime errors will cause your program to crash. Runtime errors can occur in
almost any program, but some examples include:
● Doing mathematical calculations on strings.
● Performing illegal mathematical operations (such as dividing numbers by 0)
● Reading and using values from empty textboxes.
● Reading a list value that has not been created.
● Activating a ListBox’s OnClick event when nothing is selected.
● Combining strings and numbers without changing their data types.

Errors, debugging and validation

UNIT

WHAT’S AN
ALGORITHM?

https://www.youtube.com/
watch?v=6hfOvs8pY1k

4 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

DIFFERENT TYPES OF INPUT VALIDATION
You can use different types of input validation in your program, including:
● Required input validation prevents the processing until certain required

inputs are given. When you must read a value and perform a calculation
from an Edit component, you may want to test whether the Edit component
has a value before proceeding with calculations.

….
if edtAmount.text = ‘‘ then

 ShowMessage(‘Enter a value’)
Else

 rAmount := StrToFloat(edtAmount.text);
….

● Type validation ensures that the data entered is the correct data type. In
your calculator application, you could prevent the user from entering any
values that are not numbers. Alternatively, you could inform the user that an
invalid input was entered if he or she tries to do a calculation with letters and
request them to enter the correct data.

● Length validation ensures that the data entered is the correct length.

Note

The Length function determines the length of a string.

….
sPassword := edtPassword.text;

if length (sPassword) >= 8 then
 ….

Else
 rAmount := StrToFloat(edtAmount.text);
….

● Range validation is used to ensure that number or date falls within a specific
range. For example, in a form asking a user’s age, you might use range
validation to ensure the user’s age is between 0 and 120.

iAge := StrToInt(edtAge.text);
if (iAge > 0) AND (iAge < 120) then

 ….
Else

 ShowMessage(‘Enter an age in the range 1 to 119’);
….

● Pattern matching validation ensures that the data entered matches a
specific pattern. For example, all email addresses would match the pattern
that they contain a bunch of letters or numbers, followed by an “@” sign,
followed by more letters or numbers, followed by one or two groups of a full
stop with letters.

Take note

"]" refers to a null/empty
string.

Did you know

In general, it is better to
prevent a user from making
a mistake than to inform
the user that they have
made a mistake afterwards.

13term 1 I Chapter 1 Grade 10 revision and MatheMatical Functions I Unit 1.2 Mathematical methods

CONSOLIDATION ACTIVITY Chapter 1: Grade 10 Revision and Mathematical Functions

QUESTION 1 GENERAL PROGRAMMING SKILLS

INSTRUCTIONS
Open the incomplete program in the Question1_1 folder found in the Question 1 folder.

Add your name and surname as a comment in the first line of the Question1_1_u.pas file.

Compile and execute the program. The program currently has no functionality.

SCENARIO
Congratulations! You have been selected to take part in your schools Cricket tour in New Zealand in the
upcoming December holidays. Unfortunately, there are some costs involved and your parents have stated that
you will have to come up with some of the money yourself. Fortunately, you are an IT student and are able to
use the skills you have learnt in IT to raise some funds.

You have decided to create two applications that will help you to keep track of the money you will make.

1.1 To earn some money, you have decided to do some painting for your neighbours and family.
You charge a rate per m2. Open the Delphi project Question1_1_p.dpr, the form contains the following GUI:

1.1.1 In the btnCalcArea button’s OnClick event.

a. Declare the necessary variables for your calculations.

● Length

● Width

b. Get the Length and Width as input from the two edits and assign them to your variables.

c. Calculate the Area of the wall and display the output in lblArea.

1.1.2 In the btnCalcAmount button’s OnClick event.

a. Calculate the amount of money earned. Your fees are R3.15 per m2 area.

b. Display the output in lblAmount as Currency. Above is a screenshot of output.

New words

These are dif� cult words that you may not have encountered before.
A brief explanation for these words are given.

125term 3 I Chapter 5 TexT files I Unit 5.4 Creating reports

CONSOLIDATION ACTIVITY Chapter 5: Text files continued

QUESTION 2

Open project WebsiteUsers_p from the 05 – Website Users Folder.

Details on registered users for a popular website are stored in a text file Users.txt.

Storing data into this text file without any security would put the system at risk.
As a result, a user’s name is obfuscated (hidden) by inserting dummy data
between the actual data.

The actual data is found at the even positions of the provided text. For
example: FTBaYlHoKnU represents the name Talon

F T B a Y l H o K n U
1 2 3 4 5 6 7 8 9 10 11

First 3 lines from the Text File:

rMMhUlOeCnDgKiB
SAWsIaNnCdHaI
VABnOdKiFlVeK

In the OnClick event of the [Load Data] button write code to:

● Check if the Users.txt text file exists. If the file does not exist, display an error message and terminate the
program.

● Connect to the file and open it for reading.
● Loop through the text file, extracting a single line from the file each time the loop runs.
● Process the extracted line, copying only the characters at even positions in the extracted line.
● Display the processed line (decrypted) in the redOut RichEditBox.

QUESTION 3

Open project StaffLogin_p from the 05 – Staff Login Folder.

A business requires a login system for employees when they interact with a work computer. Details on users have
been captured in a text file named staff.txt. The text file contains delimited data formatted as follows:

<NAME>#<ID NUMBER>#<PASSWORD>

New words

obfuscated – the
deliberate act of creating
source or machine code
that is difficult for humans
to understand

IT-Practical-LB-Gr11.indb 6 2019/10/02 10:13

1TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS

TERM 1

CHAPTER

1
ERRORS, DEBUGGING AND
MATHEMATICAL METHODS

CHAPTER UNITS

Unit 1.1: Errors, debugging and validation

Unit 1.2: Mathematical methods

 Learning outcomes

At the end of this chapter you should be able to:
● consolidate your knowledge of the work done in Grade 10
● use the different mathematical methods: Random(), RandomRange(), Round(),

Trunc(), Frac(), Ceil(), Floor(), Sqr(), Sqrt(), Inc(), Dec(), Pi and Power()
● use the mathematical methods to solve programs.

INTRODUCTION

This chapter serves to consolidate all the knowledge you acquired in your
Grade 10 studies (also see Annexure A for more Grade 10 revision). It also
focuses on new content that includes work on mathematical methods. You will
use these mathematical methods to solve problems during this year.

IT-Practical-LB-Gr11.indb 1 2019/10/02 10:13

2 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

1.1

Programming errors can generally be grouped into three categories: syntax
errors, runtime errors and logic errors.

Syntax refers to the rules of the programming language. For example, in Delphi,
this includes the rules that all statements have to end with a semicolon and that
the colon-equals operator (:=) is used to assign values. Syntax errors occur when
you break the rules of the programming language.

Common syntax errors include:
● Leaving out a semicolon at the end of a statement.
● Adding a semicolon at the end of a line which is not the end of a statement

(for example, in an IF-THEN-ELSE statement).
● Leaving out the command “var” when declaring variables.
● Assigning a variable using the equals sign.
● Making a typing mistake in the name of a variable.
● Not surrounding strings with the single quotation marks.
● Supplying variables to a function in the incorrect order or supplying an

incorrect number of variables to a function.

With Delphi, RAD Studio will provide you with information on the error in the
Structure panel at the top left Code screen, as well as in the compiler when you
try to run the program. Double clicking on the mistake in the Structure panel will
jump to the line with the problem.

Figure 1.1: The Structure panel will inform you of most syntax mistakes

Runtime errors occur when you ask your program to do a task that is either
impossible or is impossible under certain circumstances. In most instances,
runtime errors will cause your program to crash. Runtime errors can occur in
almost any program, but some examples include:
● Doing mathematical calculations on strings.
● Performing illegal mathematical operations (such as dividing numbers by 0)
● Reading and using values from empty textboxes.
● Reading a list value that has not been created.
● Activating a ListBox’s OnClick event when nothing is selected.
● Combining strings and numbers without changing their data types.

Errors, debugging and validation

UNIT

WHAT’S AN
ALGORITHM?

https://www.youtube.com/
watch?v=6hfOvs8pY1k

IT-Practical-LB-Gr11.indb 2 2019/10/02 10:13

3TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.1 Errors, debugging and validation

One way to solve a runtime error is to step through your program. You can also search for the error code
online to see if it helps you to identify the cause of the error.

Figure 1.2: Error 102 is caused by a � le assignment problem

The � nal, and most dif� cult errors to solve are logic errors. These errors occur when there is a logical error
or design problem in your program. While logic errors can cause applications to crash or give error
messages, the program can also work without issue but give incorrect answers.

One way to identify a logic error is to use RAD Studio to track the value of the variable with the incorrect
result. By seeing how the value changes with each step of the application, you can usually identify the
point at which the mistake occurs. You will learn more about this technique in a later chapter.

VALIDATING DATA
Data validation is a technique used by programmers to check (or validate) the information that users enter
before processing it. This allows programmers to prevent common errors from occurring by making sure
that the information entered is correct before it is used. The goal of input validation is to prevent users from
accidentally or purposefully entering incorrect data into your program.

If your program automatically generates the data it will use, you can test
the data before using it. You can also improve the algorithm generating the
data to ensure that only the correct types of data are generated for your
program.

In contrast, when a user is asked to supply data for your program, many
unpredictable things can happen. The user may have:
● misunderstood what data is expected
● clicked the next button without entering data
● entered the correct data in an incorrect format
● entered the correct type of data, but an incorrect value.

This incorrect data can cause your application to crash, or even worse, provide incorrect output.

New words

step through – to step
through means that you are
working through a program
line by line

validate – to try and lessen
the number of errors during
the process of data input in
programming

IT-Practical-LB-Gr11.indb 3 2019/10/02 10:13

4 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

DIFFERENT TYPES OF INPUT VALIDATION
You can use different types of input validation in your program, including:
● Required input validation prevents the processing until certain required

inputs are given. When you must read a value and perform a calculation
from an Edit component, you may want to test whether the Edit component
has a value before proceeding with calculations.

 ….
if edtAmount.text = '' then
 ShowMessage('Enter a value')
Else
 rAmount := StrToFloat(edtAmount.text);
 ….

● Type validation ensures that the data entered is the correct data type. In
your calculator application, you could prevent the user from entering any
values that are not numbers. Alternatively, you could inform the user that an
invalid input was entered if he or she tries to do a calculation with letters and
request them to enter the correct data.

● Length validation ensures that the data entered is the correct length.

Note

The Length function determines the length of a string.

 ….
 sPassword := edtPassword.text;
if length (sPassword) >= 8 then
 ….
Else
 rAmount := StrToFloat(edtAmount.text);
 ….

● Range validation is used to ensure that number or date falls within a speci� c
range. For example, in a form asking a user’s age, you might use range
validation to ensure the user’s age is between 0 and 120.

 iAge := StrToInt(edtAge.text);
if (iAge > 0) AND (iAge < 120) then
 ….
Else
 ShowMessage('Enter an age in the range 1 to 119');
 ….

● Pattern matching validation ensures that the data entered matches a
speci� c pattern. For example, all email addresses would match the pattern
that they contain a bunch of letters or numbers, followed by an “@” sign,
followed by more letters or numbers, followed by one or two groups of a full
stop with letters.

Take note

']' refers to a null/empty
string.

Did you know

In general, it is better to
prevent a user from making
a mistake than to inform
the user that they have
made a mistake afterwards.

IT-Practical-LB-Gr11.indb 4 2019/10/02 10:13

5TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.1 Errors, debugging and validation

IMPLEMENTATION OF INPUT VALIDATION
Input validation can be implemented in several different ways:
● One way to implement input validation is to inform the user of the problem

before they try to process the data. This could be in the form of an error
message or a disabled button with an error message.

● A second way of implementing input validation is to check the data before it
is processed. With this implementation, you build certain checks or
conditional statements into your program to ensure that you do not process
incorrect data. When these statements identify incorrect data, you send a
message informing the user of the problem.

Activity 1.1

1.7.1 What is the difference between syntax, runtime and logic errors?

1.7.2 Give two examples of each of the following errors:

a. Syntax errors

b. Runtime errors

c. Logic errors

IT-Practical-LB-Gr11.indb 5 2019/10/02 10:13

6 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

METHODS
A method is a segment of pre-written programming code that performs a speci� c task. Methods are
written by the developers of Delphi. There are two types of methods: functions and procedures. You have
already worked with the data conversion functions IntToStr, FloatToStr, StringToFloat and StringToInt as
well as formatting functions FloatToStrF and Format. In this chapter, we will discuss mathematical functions
ROUND, TRUNC, FRAC, CEIL, FLOOR, SQR, SQRT and PI and the procedures INC and DEC.

Methods are provided in Units for use by programmers. For example, the Math Unit hosts a collection of
mathematical functions. The names of the Units that the programmers are most likely to use are
automatically included in the Uses clause of the Unit of the Form.

You can determine from which Unit a function or procedure is, by hovering you mouse over the function
or procedure name. A tooltip appears displaying the information about the function or procedure. If you
hover on the StrToInt function the tooltip below will appear:

Parameter – type of information
the function is expecting from the
user before execution

Return type of the function

StrToInt function is found in the SysUtils unit

When a programmer uses a function or procedure and the Unit name of the function or procedure does
NOT appear in the Uses clause, then a compiler error will occur. The programmer needs to add the name
of the Unit to the Uses clause. For example, if you are using the functions from the Math Unit then you
have to add the Math Unit to the Uses clause:

uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, ComCtrls, ExtCtrls, Math;

If you do not know the Unit name of the function or procedure, then do the following:
● Type the name of the function or procedure in the Delphi editor.
● Click on the name of the function or procedure you type in the bullet above.
● Press <Ctrl> + <F1> simultaneously.
● Delphi Help will provide you with the information of the function or procedure.

Functions and procedures can be called from any part of a program. When the functions or procedures
are called, control from the program is transferred to the function or procedure. The programming code
for the function or procedure is then executed. Once the programming code for the function or procedure
terminates, control is transferred back to the main program.

Mathematical methods1.2

UNIT

IT-Practical-LB-Gr11.indb 6 2019/10/02 10:13

7TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.2 Mathematical methods

IMPORTANT INFORMATION ABOUT FUNCTIONS
Delphi prewritten functions can be called from any part of a program. A function is always called within
another statement and returns a single value. For example:

The StrToInt function in the statement below is called in an assignment statement and returns an
integer value.
 iNum := StrToInt(edtValue.Text);

PREDEFINED MATHEMATICAL FUNCTIONS

RANDOM() FUNCTION
You learnt about the Random function in Grade 10. The RANDOM function generates a random number
from 0 to less than 1.
 rNumber := Random()

If you want to generate a number from a to b, then use the formula:
 iNumber := Random(b – a + 1) + a

Example: To generate a random number in the range 10 to 99 the code is:
 iNumber := Random(90) + 10

RANDOMRANGE() FUNCTION
Syntax: RandomRange(Num1,Num2)
The RandomRange function generates a random integer number from Num1 to one less than Num2.
Example:
 iNum := RandomRange(1,7);

This statement will generate a random integer number from 1 to 6.

ROUND() FUNCTION
The Round function rounds a real number to an integer value.

The ‘Banker’s Rounding’ method is used for rounding numbers. The real number X is rounded to the
nearest whole number. If X is exactly halfway between two whole numbers, the result is always the even
number of the two whole numbers.

For example:
 rX := 14.5;
 iAns := Round(rX);

Steps to complete the rounding:
● Step 1: Establish between which two whole numbers rX lies. Example 14.5 lies between 14 and 15
● Step 2: Establish whether rX lies exactly halfway between the two whole numbers. In this case 14.5

lies exactly halfway between 14 and 15
● Step 3:

 If rX lies exactly halfway, then round to the nearest even whole number. In this case 14.5 will be
rounded down to 14

 If rX does not lie exactly halfway between the two whole numbers, then round normally according
to mathematical rules to the nearest whole number

IT-Practical-LB-Gr11.indb 7 2019/10/02 10:13

8 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Other Examples:

STATEMENT iANS

iAns := Round(12.4) 12

iAns := Round(12.5) 12 (rounds down to even)

iAns := Round(12.6) 13

iAns := Round(13.4) 13

iAns := Round(13.5) 14 (rounds up to even)

iAns := Round(13.6) 14

Activity 1.8

1.8.1 Study the Delphi statement below and then answer the questions that follow:

 redDisplay.Lines.Add(IntToStr(Round(rNum));

a. List the function(s) used in the statement.

b. Indicate to which Unit the function(s) belong(s).

1.8.2 Determine the value of iAns in each of the following statements:

a. iAns := Round (8.5);

b. iAns := Round (20.4);

c. iAns := Round (20.7);

d. iAns := Round(21.5);

TRUNC() FUNCTION
The Trunc function truncates (removes or ‘chops off’) the decimal part of a real
number. It returns an integer after the truncation.

Examples:

STATEMENT iANS

iAns := Trunc(12.4) 12

iAns := Trunc(12.5) 12

iAns := Trunc(12.8) 12

FRAC() FUNCTION
The Frac function returns the decimal part of a real number. It returns a real
number.

Examples:

STATEMENT rANS

rAns := Frac(12.4) 0.4

rAns := Frac(12.5) 0.5

rAns := Frac(12.8) 0.8

CEIL() FUNCTION
The Ceil function rounds a real number up to the highest integer value. The Ceil
Function belongs to the Math Unit and you must add the Math Unit to the Uses
clause before using it, otherwise you will get a compiler error.

New words

Random – to generate a
random number from 0 to
less than 1

RandomRange – to
generate a random integer
number from Num1 to one
less than Num2

Round – to round a real
number to an integer value

Trunc – to remove or chop
off the decimal part of the
real number. It returns an
integer after the truncation

Frac – to return the
decimal part of a real
number

Ceil – to round a real
number up to the highest
integer value

IT-Practical-LB-Gr11.indb 8 2019/10/02 10:13

9TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.2 Mathematical methods

Examples:

STATEMENT iANS

iAns := Ceil(12.4) 13

iAns := Ceil(18.5) 19

iAns := Ceil(–12.8) –12 (remember that –12 is greater than –13)

FLOOR() FUNCTION
The Floor function rounds a real number down to the lowest integer value.
The Floor Function belongs to the Math Unit.

Examples:

STATEMENT iANS

iAns := Floor(12.4) 12

iAns := Floor(18.5) 18

iAns := Floor(–12.8) –13 (remember that –13 is less than –12)

SQR() FUNCTION
The SQR function returns the square of an integer or real number. The return
value is the same type as the number being squared.

Examples:

STATEMENT iANS rANS

iAns := Sqr(12) 144

rAns := Sqr(5.5) 30.25

SQRT() FUNCTION
The SQRT function returns the square root of a number. The result type is always
real. Remember that the square root of a negative number is unde� ned.

Examples:

STATEMENT rANS

rAns := Sqrt(144) 12

rAns := Sqrt(31.36) 5.6

PI
PI is a prede� ned constant that returns a real number giving a useful approximation
of the value of Pi.

Example:

STATEMENT OUTPUT

redDisplay.Lines.Add(FloatToStr(Pi)); 3.14159265358979

New words

Floor – to round a real
number down to the lowest
integer value

SQRT – to return the
square root of a number

Pi – is a prede� ned
constant that returns a real
number giving a useful
approximation of the value
Pi

IT-Practical-LB-Gr11.indb 9 2019/10/02 10:13

10 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

POWER FUNCTION
Syntax: Power(base,power)

The POWER function raises a base to a power and returns a real answer. Both
the base and power are real numbers.

Example:

STATEMENT OUTPUT

redDisplay.Lines.Add(FloatToStr(Power(12.5,2))) 156.25

redDisplay.Lines.Add(FloatToStr(Power(3,4))) 81

PREDEFINED PROCEDURES
A procedure is also a pre-written subroutine designed to perform a speci� c
purpose. Unlike a function, a procedure can return no result, one result or more
than one result. A call to a procedure is a standalone statement whilst a call to a
function is always within another statement. Just like a function, a procedure is
only executed when it is called. We are going to focus on two procedures: INC
and DEC.

INC() PROCEDURE
The INC procedure increments the ordinal type variable passed to it. In this
chapter we will work with ordinal type integers and characters.

The default is to increment the ordinal variable by 1 unit:
Inc(iAns);

This statement is equivalent to iAns := iAns + 1;

However, you can increment an ordinal type variable by an integer set by yourself:
 Inc(iAns,5);

This statement is equivalent to iAns := iAns + 5;
Example of code:

 …
Line 1: iNum := 6;
Line 2: Inc(iNum);
Line 3: Inc(iNum,5);
 …

Explanation of code:
● In line 1, the value 6 is assigned to iNum
● In line 2, the value stored in iNum is increased by 1 – iNum holds the value 7.
● In line 3, the value stored in iNum is increased by 5 – iNum hold the value 12

Example of Code:

 …
Line 1: cLetter1 := 'A';
Line 2: cLetter2 := 'T';
Line 3: Inc(cLetter1);
Line 4: Inc(cLetter2,2);
Line 5: redDisplay.Lines.Add(cLetter1 +' '+ cLetter2);
 …

New words

POWER – to raise a base
to a power and returns a
real answer

INC – to increment the
ordinal type variable passed
to it

IT-Practical-LB-Gr11.indb 10 2019/10/02 10:13

11TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.2 Mathematical methods

Explanation of code:
● In line 1, the value 'A' is assigned to cLetter1
● In line 2, the value 'T' is assigned to cLetter2
● In line 3, the value of cLetter1 is incremented by 1. The ordinal value of A is

incremented by 1. You will learn more about ordinal values and ASCII values
later on in this book. cLetter1 holds the value 'B'

● In line 4, the value of cLetter2 is incremented by 2. Again, it’s the ordinal
value of 'T' that is incremented by 2. cLetter2 holds the value 'V'

● In line 5, the values B V will be displayed

DEC() PROCEDURE
The DEC procedures decrements an ordinal type variable. The default is to
decrement the ordinal variable by 1 unit, but you can supply an integer to
decrement by a different amount. Example of code using the Dec procedure:

When the code segment above is traced:

 Begin
 …
Line 1: iNum1 := 7;
Line 2: iNum2 := –5;
Line 3: cLetter1 := 'B';
Line 4: cLetter2 := 'T';
Line 5: Dec(iNum1);
Line 6: Dec(iNum2,3);
Line 7: Dec(cLetter1);
Line 8: Dec(cLetter2,2);
Line 9: redisplay.Lines.Add(IntToStr(iNum1));
Line 10: redisplay.Lines.Add(IntToStr(iNum2));
Line 11: redisplay.Lines.Add(cLetter1);
Line 12: redisplay.Lines.Add(cLetter2);
 …
 End;

LINE NUMBERS INUM1 INUM2 CLETTER1 CLETTER2 OUTPUT

1 7

2 –5

3 B

4 T

5 6

6 –8

7 A

8 R

9 6

10 –8

11 A

12 R

Stop

New words

DEC – to decrement an
ordinal type variable

IT-Practical-LB-Gr11.indb 11 2019/10/02 10:13

12 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 1.9

1.9.1 Open the SquareCubeRoot_p project from the 01 – Square Cube and Square Root
folder and create an OnClick event for the [Calculate] button to do the following:
● Generate a random number in the range 10 to 20 (inclusive).
● Display the random number in the EditBox.
● For each number from 1 to the random generated number, determine the

square, cube and square root of the number. Tabulate the output. Display the
number, its square,cube and square root with appropriate messages. Numeric
values must be formatted to two decimal places.

● Save and run the project.

1.9.2 Open the CircleAreaCircum_p project from the 01 – Circle Area and
Circumference folder and create an OnClick event for the Calculate button to read
the radius of a circle and calculate and display the radius, area and circumference
of the circle. The formulae to calculate:

● Area : π r 2

● Circumference : 2π r
Save and run your program.

1.9.3 Open the LearnerAlphabet_p � le from the 01 – Learner Alphabet folder. A letter of
the alphabet is allocated in the following manner to each learner:

Learner 1: Z Learner 2: X

Learner 3: V Learner 4: T ….

Do the following:

● Create an OnCreate event to initialise variables for learner number and the letter
of the alphabet that will be assigned to the � rst learner. Display the details for
the � rst learner.

● Create an OnClick event for the Generate button to generate and display the
next line of the sequence.

Take note

If you cannot see all the
lines that you have
generated in the Memo
component, then you need
to set the ScrollBars
property to ssVertical.

Take note

If you cannot see all the
lines that you have
generated in the Memo
component, then you need
to set the ScrollBars
property to ssVertical.

IT-Practical-LB-Gr11.indb 12 2019/10/02 10:13

13TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.2 Mathematical methods

CONSOLIDATION ACTIVITY Chapter 1: Errors, debugging and mathematical methods

QUESTION 1 GENERAL PROGRAMMING SKILLS

INSTRUCTIONS
Open the incomplete program in the Question1_1 folder found in the Question 1 folder inside the 01 –
Question 1 folder.

Add your name and surname as a comment in the � rst line of th e Question1_1_u.pas � le.

Compile and execute the program. The program currently has no functionality.

SCENARIO
Congratulations! You have been selected to take part in your schools Cricket tour in New Zealand in the
upcoming December holidays. Unfortunately, there are some costs involved and your parents have stated that
you will have to come up with some of the money yourself. Fortunately, you are an IT student and are able to
use the skills you have learnt in IT to raise some funds.

You have decided to create two applications that will help you to keep track of the money you will make.

1.1 To earn some money, you have decided to do some painting for your neighbours and family.
You charge a rate per m2. Open the Delphi project Question1_1_p.dpr, the form contains the following GUI:

1.1.1 In the btnCalcArea button’s OnClick event.

a. Declare the necessary variables for your calculations.

● Length

● Width

b. Get the Length and Width as input from the two edits and assign them to your variables.

c. Calculate the Area of the wall and display the output in lblArea.

1.1.2 In the btnCalcAmount button’s OnClick event.

a. Calculate the amount of money earned. Your fees are R3.15 per m2 area.

b. Display the output in lblAmount as Currency. Above is a screenshot of output.

IT-Practical-LB-Gr11.indb 13 2019/10/02 10:13

14 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 1: Errors, debugging and mathematical methods continued

1.2 Open the incomplete program in the Question1_2 folder inside the 01 – Question 1 folder.

Open the Delphi project Question 1_2_p.dpr which contains the following GUI.

During the week, you have decided to make and sell square Shortbread biscuits at school. It costs you R30
to make a batch of biscuits that gives approximately 50 blocks of shortbread. You sell the biscuits in packets
of 5 blocks for R7.50 per packet.
Any shortbread that breaks during preparation and packaging are not sold.

1.2.1 Insert the picture Shortbread.jpg into the image component and resize it to � t.

1.2.2 spnShort values needs to be between 40 and 55.

1.2.3 Get the number of usable blocks of shortbread from the spinner and calculate the number of
packets that can be made.

1.2.4 Calculate the income and the pro� t which is made from selling that packets of shortbread.

1.2.5 Clear the memOutput.

1.2.6 Display the output as follows in memOutput. Use the test data to check it.

IT-Practical-LB-Gr11.indb 14 2019/10/02 10:13

15TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.2 Mathematical methods

CONSOLIDATION ACTIVITY Chapter 1: Errors, debugging and mathematical methods continued

QUESTION 2

In the 01 – Question2 folder, open the project � le Question2_p.dpr. Figure 2-1 shows the GUI design.

Figure 2-1

Due to the growing number of Comicon enthusiasts, each year the number of participants increases making waiting
to just get in considerably time-consuming. Extreme Comicon wants you to create a program that will make access
to the Comicon by using a pass key and details hassle free. Add code to accomplish this task.

2.1 Button [Generate Pass Key]
Add code in the button to generate a unique pass key for members to be able to gain access:
● Two letters of the name starting at the second letter.
● The � rst four letters of surname
● The letters should all be uppercase
● Any four random digits

● Display the reference number in the TEdit edtPassKey

Example of Input/Output:

IT-Practical-LB-Gr11.indb 15 2019/10/02 10:14

16 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 1: Errors, debugging and mathematical methods continued

2.2 Button [Submit]

Add code for the button to receive process and provide
feedback on the various prices that has to be paid.

2.2.1 Retrieve and save input from the input � elds
accordingly.

2.2.2 Adults pay R40 and kids pay R20 (these totals
will never change), calculate the total amount
that needs to be paid. Also take into
consideration that members get 10% discount
and non-members pay full price.

2.2.3 Provide code to display the details if the format
is as follows:

Registration Details: <tab><tab> <current date>
The adult ticket price is: <R> <adultprice> <2decimal places>
The kids ticket price is: <R> <kidsprice> <2decimal places>
The total ticket price is: <R> <totalprice> <2decimal places>

Example of Input/Output

QUESTION 3

3.1 Open the Question 3_1 folder found in the Question 3 folder.

Open the � le Delimiting_p.dpr

In Grade 11 your syllabus includes the use of text � les for storing data long-term. A common way of storing
data of multiple categories is by saving strings in the text � le that are divided by what we call delimiters.
These strings would look something like the following:

Elephant Song#205

Torpedo Run#156

As a programmer you always save the name of the book � rst, then a delimiter character of your choice and
then the price of the book.

NOTE: The delimiter can be any character, but it should be a character that is highly unlikely to ever be part
of any of the strings involved so that the position of the delimiter character can tell us where to split the
strings and then be removed.

Book Name

Delimiter Book Price

IT-Practical-LB-Gr11.indb 16 2019/10/02 10:14

17TERM 1 I CHAPTER 1 ERRORS, DEBUGGING AND MATHEMATICAL METHODS I UNIT 1.2 Mathematical methods

CONSOLIDATION ACTIVITY Chapter 1: Errors, debugging and mathematical methods continued

3.1.1 By using the delimiter character given in edtDelimiter, the string in edtDelimitedString, and your
knowledge of string manipulation code the following in the OnClick event of the btnAdd button:

Split the delimited string into its separate substrings.

Output the name of the book in memBook and the price of the book into memPrice with the correct
currency formatting.

3.1.2 Add code to the OnClick event of btnSummary that will:

Show the total number of books in memBook and the total price of all the books in memPrice using
the correct currency formatting.

Example:

3.2 Open the Question 3_2 folder found in the 01 – Question 3 folder.

Open the project � le CoursePass_p.dpr

Cooking for Business is a company that offers short cooking courses for people who would like to start
working in the food industry. This application is going to be used by participants to check if they have
passed the course.

3.2.1 Use the OnExit event of edtName to validate the name that the user types in by using a loop to
check if each character is either an uppercase letter, a lowercase letter, a space or a hyphen (-). If a
character does not satisfy these criteria, then a relevant message should show, and focus should go
back to edtName.

3.2.2 There are two pass criteria, namely:

● At least 80 for cooking, more than 60 for presentation

● At least 80 for professionalism, above 50 for cooking and presentation

Complete the IF-statement under the OnClick event of btnCheckPass to show whether the
participants passed or failed.

IT-Practical-LB-Gr11.indb 17 2019/10/02 10:14

18 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 1: Errors, debugging and mathematical methods continued

QUESTION 4 PROBLEM SOLVING

Open the Question 4 folder.

Load the project � le Question4_p.dpr

4.1 A palindrome is a word or phrase that is written exactly the same from front to back and back to front, for
example:
● noon
● civic
● radar
● madam
● able was I ere I saw elba

Your task is to complete the [4.1 Test for palindrome] button code. When the button is pressed, the text in
the text � eld must be tested. If it is a palindrome, a popup window must appear with a suitable message, for
example:

If it is not a palindrome, it should also show a popup window with a suitable message. Capital letters and
lowercase letters can be ignored. Once a palindrome is found, the [4.2 Draw] button and side length text
� eld edtSide must become useable to the user.

4.2 Write the code for the [4.2 Draw] button. When the button is pressed, the value must be taken from the text
� eld. This value must be the side length of a square � lled with an X O X O X O pattern. Use the memo block
for the output. Each odd row must start with an X and every even row must start with an O. Place spaces
between the characters e.g.

A square with a side length of 5 will look like this
X O X O X
O X O X O
X O X O X
O X O X O
X O X O X

4.3 Write code for the reset button to clear the EditBoxes and MemoBox and to disable the [4.2 Draw] button
and the side length EditBox.

Ensure that your name and surname has been entered as a comment in the � rst line of the
program � le.

Save your program

IT-Practical-LB-Gr11.indb 18 2019/10/02 10:14

19TERM 1 I CHAPTER 2 NESTED LOOPS

TERM 1

CHAPTER

2NESTED LOOPS

CHAPTER UNITS

Unit 2.1 Nested loops

Unit 2.2 Using nested loops

Unit 2.3 Creating shapes using nested loops

 Learning outcomes

At the end of this chapter you should be able to
● describe the concept of a nested loop
● use nested loops in algorithms
● create simple nested loops in applications
● draw shapes using special symbols
● use trace tables to debug a nested loop.

INTRODUCTION

In Annexure A we consolidated most work done in Grade 10. Looping formed an
integral part of the Grade 10 curriculum. We focused on the three loops:
● FOR-loop
● WHILE-loop
● REPEAT-loop

In this chapter we will focus on nested loops. A nested loop is one loop within
another loop. You will learn how to apply nested loops to develop algorithms,
� owcharts and programs to solve programming problems. You will also use trace
tables to test the correctness of algorithms, � owcharts and programs.

IT-Practical-LB-Gr11.indb 19 2019/10/02 10:14

20 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

2.1

A nested loop is a loop within a loop, that is, one loop that is placed inside the body of another loop. We
refer to the � rst loop as the outer loop and the second loop as the inner loop. We say that the second
loop (inner loop) is nested within the � rst loop (outer loop).

STRUCTURE OF A NESTED LOOP
A nested loop is structured as follows:

Start of the fi rst loop
begin
 …
 Start of second the loop
 begin
 ….
 end;
 …
end;

Note:
● the second loop (inner loop) is nested within the � rst loop (outer loop)
● the inner loop and outer loop can be represented by a FOR-loop, WHILE-loop or REPEAT-loop
● the outer loop and inner loop can both be the same loop type, that is, either two FOR-loops or two

WHILE-loops or two REPEAT-loops.

Look at the following examples:

Example Nested FOR-loop
 for loopVariable1 := initialValue to/downto endValue do
 begin
 statement(s);
 ...
 for loopVariable2 := initialValue to/downto endValue do
 begin
 statement(s);
 ...
 end; //inner loop
 ...
 end; //outer loop

Nested Loops

UNIT

IT-Practical-LB-Gr11.indb 20 2019/10/02 10:14

21TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.1 Nested Loops

Example Nested WHILE-loop
 while condition1 do
 begin
 statement(s);
 . . .
 while condition2 do
 begin
 ...
 statement(s);
 ...
 end; //inner loop
 ...
 end; // outer loop

Example Nested REPEAT-loop
 Repeat
 statement(s);
 ….
 Repeat
 statement(s);
 ….
 until condition2; //inner loop
 …
 until condition1; //outer loop

● The outer loop and inner loop can be a combination of the different loop
types. Below is an example of a nested loop that is a combination of two
different loops:

Example NESTED loop
 for loopVariable1 := initialValue to/downto endValue do
 begin
 statement(s);
 ...
 while condition1 do
 begin
 statement(s);
 ...
 end; //inner loop
 ...
 end; //outer loop

New words

outer loop – the outer part
of a nested loop

inner loop – the inner part
of a nested loop

IT-Practical-LB-Gr11.indb 21 2019/10/02 10:14

22 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 2.1

You need to develop a multiplication table for a primary school learner as shown below:

1 × 1 = 1 2 × 1 = 2

1 × 2 = 2 2 × 2 = 4

1 × 3 = 3 2 × 3 = 6

You are required to create the 1 times and 2 times multiplication table. In the 1 times multiplication table, you only need
to fi nd the product of 1 multiplied by a multiplier from 1 to 3. This is also true for the 2 times multiplication table.

Let’s create an algorithm and fl owchart for the problem.

ALGORITHM FLOWCHART

for I = 1 to 2
begin
 for J = 1 to 3
 begin
 Answer = I* J
 Display I,’*’, J, ‘=’, answer
 end
end

The I-loop is the outer loop.

The J-loop is the inner loop.

The I-loop will run twice.

The J-loop will run three times.

The statements within the J-loop will be executed
six times.

Start

1

2

3

4

5

6

7

8

I← 1

J ← 1

I← J + 1

J ← J + 1

Answer ← I * J

Stop
False

False

Display
I, '*', J, '=', Answer

I <= 2

J <= 3

The nested loop executes in the following manner:

● When the outer loop is executed for the fi rst time, it triggers the execution of the inner loop. Control is transferred
from the outer loop to the inner loop. The inner loop executes from its initial value to its end value and control is
transferred back to the outer loop.

● For each change of value of the outer loop value, the inner loop is triggered. This process continues until the outer
loop reaches its end value.

● Therefore in the example above, the inner loop will be triggered twice and for each trigger, the inner loop is executed
three times.

IT-Practical-LB-Gr11.indb 22 2019/10/02 10:14

23TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.1 Nested Loops

Guided activity 2.1 continued

The trace table for the fl owchart:

BOX NO I J ANSWER I <= 2 J <= 3 OUTPUT

1 1

2 T

3 1

4 T

5 1

6 1 * 1 = 1

7 2

4 T

5 2

6 1 * 2 = 2

7 3

4 T

5 3

6 1 * 3 = 3

7 4

4 F

8 2

2 T

3 1

4 T

5 2

6 2 * 1 = 2

7 2

4 T

5 4

6 2 * 2 = 4

7 3

4 T

5 6

6 2 * 3 = 6

7 4

4 F

8 3

2 F

Stop

IT-Practical-LB-Gr11.indb 23 2019/10/02 10:14

24 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 2.1 continued

Note:

● Boxes 5 and 6 are executed six times
The equivalent Delphi code for algorithm and fl owchart:

var i, j,iAnswer:Integer;
begin
memDisplay.Lines.Clear;
for I := 1 to 2 do // outer loop
begin
 for J := 1 to 3 do //inner loop
 begin
 iAnswer := I * J;
 memDisplay.Lines.Add(IntToStr(I) +' * '+ IntToStr(J) +' IntToStr(iAnswer));
 end;
 memDisplay.Lines.Add(' ');
end;

Alternatively, the equivalent code for the fl owchart can be written using nested WHILE-loops. Remember that you can
use a FOR-loop or a WHILE-loop for a counter driven loop.

…
memDisplay.Lines.Clear;
I := 1;
while I <= 2 do
 begin
 J := 1;
 while J <= 3 do
 begin
 iAnswer := I * J;
 memDisplay.Lines.Add(IntToStr(I) +' * '+ IntToStr(J) +' =
 '+ IntToStr(iAnswer));
 J := J + 1;
 end;
 memDisplay.Lines.Add(#13);
 I := I + 1;
 end;

IT-Practical-LB-Gr11.indb 24 2019/10/02 10:14

25TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.1 Nested Loops

Activity 2.1

2.1.1 Study the table below and then answer the questions that follow:

a. Write an algorithm to display the multiplication times table for the numbers 1 to 12 as shown in the
table above.

b. Open the MultiplicationTable_p project from the 02 – Multiplication Table folder. Write code for the
[Calculate] button to display the mulitplication Times Tables for 1 to 12 as shown in the table above.

2.1.2 Open the MultiplicationTableFormat_p project from the 02 – Multiplication Table Format folder. Write code for
the [Calculate] button to display the table as shown below:

Note:

● A number in the fi rst row
multiplied by a number in the fi rst
column will yield the product of the
two numbers.

● To fi nd the product of 4 × 5:
 place a fi nger on the number 4 in

the � rst row
 place another fi nger

on the number 5 in
the � rst column

 move the fi nger in the fi rst row to the right and the fi nger in the fi rst column down

 where both your fi ngers meet is the product of the two numbers. In this case 20.

● Remember that multiplication is commutative, that is, a × b can be written as b × a. Therefore you could have
started by multiplying the number 4 in the fi rst column with the number 5 in the fi rst row.

IT-Practical-LB-Gr11.indb 25 2019/10/02 10:14

26 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONVERTING A BINARY NUMBER TO A DECIMAL NUMBER
In Grade 10 you also learned how to convert binary numbers into decimal
numbers. Let’s revise this work.

EXAMPLE TO CONVERT A BINARY NUMBER TO A DECIMAL NUMBER
To convert the binary number 11012 to a decimal number, you write the binary
number in expanded notation and simplify:
11012 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

 = 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1
 = 8 + 4 + 0 + 1
 = 13

Note:
● Any number raised to the power zero (No) is equal to 1.
● You must follow the BODMAS rules.

Guided activity 2.2 Convert a binary number into a decimal number

Algorithm to convert a binary number into a decimal number:

Line 1 Read BinNum

Line 2 Index = length(BinNum)

Line 3 DecNum = 0

Line 4 for I = 1 to length (BinNum)

Line 5 begin

Line 6 Digit = Convert to integer BinNum[i]

Line 7 Index = Index-1

Line 8 if I = length(BinNum)

Line 9 DecNum = DecNum + 1 * Digit

Line 10 else

Line 11 begin

Line 12 Prod = 1

Line 13 for J = 1 to Index

Line 14 Prod = Prod*2

Line 15 DecNum = DecNum + Digit*Prod

Line 16 end;

Line 17 Display DecNum

EXPLAINING BINARY
NUMBERS

https://www.youtube.com/
watch?v=LpuPe81bc2w

https://qrs.ly/6dab1zo

Using nested loops2.2

UNIT

IT-Practical-LB-Gr11.indb 26 2019/10/02 10:14

27TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.2 Using nested loops

Guided activity 2.2 Convert a binary number into a decimal number continued

Note:
● Line 1: Read the binary number as a string BinNum.
● Line 2: Determine and store the length of the binary string in Index. The value of Index will be used to calculate 2Index

for each binary digit.
● Line 3: Set the initial value of the decimal number DecNum to zero.
● Line 4: Set the outer I-loop to run from 1 to the length of the string.
● Line 5: The outer loop begins.
● Line 6: Extract the character from loop position I in the binary string and convert it to integer and store the value

in Digit.
● Line 7: Each digit Digit will be multiplied by 2index. We need to determine the value of the index using the statement

Index = Index -1. The initial value Index is set to the length of the binary string in Line 2. In this line the value
of Index is decremented by 1. Suppose 1101

2
 was read, then for initial value of Index for 2index for the fi rst

digit is set as follows:
 Index set to 4 in line 2

 Index set to 3 in this line.

● Line 8: Determine whether the loop value for I equals the length of the binary string BinNum. If this is true, this
means that the last character of the string BinNum has been reached.

● Line 9: If the condition in Line 8 is true, then calculate DecNum = DecNum + 1 * Digit. Remember that the last digit
is multiplied by 20. 20 = 1

● Line 10: Else the condition in Line 8 is false
● Line 11: Else part begins
● Line 12: We are going to calculate 2index using repeated multiplication. Therefore Prod = 1
● Line 13: Set the inner J-loop to run from 1 to the value of Index
● Line 14: The statement Prod = Prod * 2 is executed Index number of times
● Line 15: Set the value of DecNum: DecNum = DecNum + Digit*Prod
● Line 16: Check whether the last value of the I-loop has been reached. If the last value of I has not been reached,

the loop continues to execute
● Line 17: Display the decimal value DecNum

ONACTIVATE EVENT
In Grade 10, you worked with the OnClick and OnCreate events. Another event we can use is called the
OnActivate event. We use the OnActivate to perform special processing when the form receives focus. A
form becomes active when focus is transferred to it.
To create an OnActivate event:
● click on the form component
● click on the Event tab in the Object inspector
● open the event handler framework for an event – double click in the grey cell next to the name of

the event.

IT-Practical-LB-Gr11.indb 27 2019/10/02 10:14

28 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

● An OnActivate event handler is created. Type the code to be executed within the BEGIN … END of
the event handler:

 [begin code]
procedure TForm1.FormActivate(Sender: TObject);
begin
 edtNumber.SetFocus;
end;
 [end code]

Activity 2.2

Refer to the algorithm to convert a binary number into decimal number above .

2.2.1 Draw a trace table for the algorithm using an input value 101
2
.

2.2.2 Open the BinaryToDecimal_p project in the 02 – Binary to Decimal Folder.

● Create an OnActivate event on the form to set the cursor to focus on the EditBox.
● Create an OnClick event for the [Convert To Decimal] button to convert a binary number to a decimal

number. Use the algorithm to convert a binary number to a decimal number.
● Run and execute the program.
● Save the program.

CONVERTING A DECIMAL NUMBER TO A BINARY NUMBER
In Grade 10, you learnt to convert a decimal number to binary number using the method shown below.
For example: Convert 10 to binary.

NUMBER REMAINDER

2 10 0

2 5 1

2 2 0

2 1 1

0

10 = 10102

In the next guided activity, we will create an algorithm to convert a decimal number to a binary number.
Work through the algorithm and make sure you understand each step.

Guided activity 2.3 Algorithm to convert a decimal number to a binary number

Read number
BinNum = ' '
Repeat
 Remainder = integer (remainder of number/2)
 BinNum = string value(remainder) + BinNum
 Number = integer (division of Number/2)
Until number = 0
Display BinNum

IT-Practical-LB-Gr11.indb 28 2019/10/02 10:14

29TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.2 Using nested loops

Activity 2.3

2.3.1 Open DecimalToBinary_p project in the 02 – Decimal to Binary Folder to convert
the fi rst N integer numbers starting from 1 into binary. If N is 12, then numbers 1 to
12 will be converted to binary. Do the following:

● Create an OnActivate event for the form to set the focus on the EditBox.
● Read in the value of N from the EditBox.
● Write code for the [Convert To Binary] button to convert the N integer numbers

into binary.
● Display the decimal number and its binary equivalent number in columns as

shown below:

● Change the property of the MemoBox so that you can scroll through the display
if all the data cannot be seen.

2.3.2 The hexadecimal number system has 16 digits: 0 – 9, A – F.
You will remember from Grade 10 that the Hexadecimal numbers A–F represent
the decimal numbers 10 – 15 respectively. Open the ConvertToHex_p project in
02 – Hexidecimal to Decimal Vice Versa folder and do the following:

● Create an OnClick event for the [Convert to Dec] button to read in a hexadecimal
number and convert the number to decimal. Display the Hexadecimal number
and the Decimal number

IT-Practical-LB-Gr11.indb 29 2019/10/02 10:14

30 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 2.3 continued

● Create an OnClick event for the [Convert to Hex] button to read in a decimal
number. Convert all decimal numbers from 1 to the number into their
hexadecimal equivalent number. Display the decimal number and their
corresponding hexadecimal number in columns.

Note: Scroll down to view 19 – 20.

CREATING CIPHERS
Ciphers are used to send encrypted messages. These ciphers would use
algorithms to hide the messages so that only people who knew the algorithm
could unlock the messages and understand their meaning. In this section you will
learn about two different types of ciphers. These are:
● Number cipher
● Caesar cipher

NUMBER CIPHER
In a number cipher each character in a message is converted to an encrypted
number in the following manner:
● All the characters that are going to be used to create messages are

identi� ed and a character list is compiled. Example:
ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789.,!?:–+=”()[]
Note: a space character appears after the character ‘Z’ in the character list.

● A message is created using the character list and all letter characters are
converted to uppercase.

● Each character in the character list has a numerical position in the list:
ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789.,!?:–+=”()[]
A is in position 1
B is in position 2
C is in position 3
…

CONVERT DECIMAL TO
HEXIDECIMAL

https://www.khanacademy.
org/math/algebra-home/

alg-intro-to-algebra/algebra-
alternate-number-bases/v/
decimal-to-hexadecimal

IT-Practical-LB-Gr11.indb 30 2019/10/02 10:14

31TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.2 Using nested loops

● The numerical position of each character in the message in the character list
is found. Example: the numerical position of each character in the message
Stop the war is:
19 20 15 16 27 20 8 5 27 23 1 18

● The numerical positions of the characters is decreased by a � xed number.
For example, let’s decrease the numerical position of the characters by 5.
The encrypted message is then:
14 15 10 11 22 15 3 0 22 18 –4 13
The encrypted characters are separated by space.

Guided activity 2.4 The Cryptographer

Open the Cryptographer_p project in the 02 – Cryptographer folder and create an OnClick
event for the [Encrypt] Button to do the following:

● Set the characters of the character list in the string variable sCharacterList. Set the
initial value of the encrypted string sOutput to null.

sOutput := '';
 sCharacterList := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789.,!?:-+="()[]';

Read the message that you want encrypted from the EditBox and covert all letter characters
to uppercase:

 sText := UpperCase(edtText.Text);

● Check if the [Number Cipher radio] button is selected. If the [Number Cipher] radio
button is selected, then:
 Extract each character from the message and check for its numerical position in the

character list sCharacterList.
 Store the numerical position in iNumber
 Add the numerical position and a space to variable sOutput

IT-Practical-LB-Gr11.indb 31 2019/10/02 10:14

32 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 2.4 The Cryptographer continued

 if rgpCipher.ItemIndex = 0 then
 begin
 for i := 1 to Length(sText) do
 begin
 sChar := sText[i];
 for j := 1 to Length(sCharacterList) do
 if sChar = sCharacterList[j] then
 iNumber := j;
 iNumber:= iNumber-5;
 sOutput := sOutput + IntToStr(iNumber) + ' ';
 end;
 end;

● Display the message string sText and the encrypted message sOutput

 memDisplay.Lines.Add('Message: '+ sText);
 memDisplay.Lines.Add('Crypted Message: '+ sOutput);

● Save and run the project.

CAESAR CIPHER
In the Number cipher you converted all the characters in a message to numbers,
and then decreased the numbers by a � xed value to obtain an encrypted
message. In a Caesar cipher, you take the encrypted message, and add the
� xed value that was subtracted from it and convert the numbers back to
corresponding characters from the character set.

New words

Caesar cipher – a
substitution cipher on
which each letter in
plaintext is ‘shifted’ a
certain number of places
down the alphabet

encrypted message – to
encode information to
prevent anyone other than
its intended recipient from
viewing it

IT-Practical-LB-Gr11.indb 32 2019/10/02 10:14

33TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.2 Using nested loops

Activity 2.4

2.4.1 Open the Cryptographer_p project in the 02 – Cryptographer folder and add code
to the OnClick event for the [Encrypt] Button to do the following:

● If the radio button Caesar Cipher is selected then:
 Set a new string variable to null.

 Read the message that you want to decrypt in the appropriate EditBox.

 Isolate the fi rst number in the encrypted message and convert the number
to an integer and add 5 to the number.

 Find the character that is stored in the character list in the integer position
calculate in bullet 2. Add the found character to the string created in bullet.

 Continue with bullets 2 and 3 until the last number in the encrypted
message is decrypted to the correct character.

● Save and run your project.
2.4.2 A composite number is a number that has 3 or more factors.

For example: 4 is a composite number because it has three factors: 1 2 4
Open the CompositeNumber_p project in the 02 – Composite Number Folder.
Write code for the OnClick event for the [Find] button to display all the composite
numbers that are less than 30.

IT-Practical-LB-Gr11.indb 33 2019/10/02 10:14

34 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

You can create simple geometrical shapes using special characters such as ‘*’
or digits.

Example 2.1 Create the shape below using the special character ‘*’

We know that there are six rows and each row has 6 *s. The code to draw this shape:

Line 1: for i := 1 to 6 do
Line 2: begin
Line 3: sLine := ’’;
Line 4: for j := 1 to 6 do
Line 5: sLine := sLine +'*';
Line 6: memDisplay.Lines.Add(sLine);
Line 7: end;

Note:

● Line 1: The outer i-loop will run six times because there are six rows.
● Line 3: String sLine is set to null for each row.
● Line 4-5: In each row, 6 *’s must be joined together.
● Line 6: Display the string sLine before moving to the next row.

Example 2.2 Creating a shape

We know that there are six rows and each row has 6 *s. The code to draw this shape:

*
**

The code to create this shape:

Line 1: for i := 1 to 5 do
Line 2: begin
Line 3: sLine := '';
Line 4: for j := 1 to i do
Line 5: sLine := sLine +'*';
Line 6: memDisplay.Lines.Add(sLine);
Line 7: end;

Creating shapes using nested loops2.3

UNIT

IT-Practical-LB-Gr11.indb 34 2019/10/02 10:14

35TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.3 Creating shapes using nested loops

Example 2.2 Creating a shape continued

Note:

● Line 1: The outer i-loop runs from 1 to 5 because we have fi ve rows.
● Line 3: String sLine for each row is set to null.
● Line 4 & 5: Each row does not display the same number of *s. Therefore the inner

j-loop cannot run to a fi xed constant value. We see from the table below that there
is a relationship between the row number and the number of *s that will be
displayed. Hence the inner loop runs from 1 to i.

ROW NUMBER NUMBER OF *S

1 1

2 2

3 3

4 4

5 5

● Line 6: Display the string sLine before moving to the next row.

● If we want to display the same shape formatted as follows:

 *

 **

● You would need to replace the statement:

 memDisplay.Lines.Add(sLine);

with

 memDisplay.Lines.Add(Format('%10s',[sLine]));

Example 2.3 Creating a shape

Create the shape below:

*

**

**

*

IT-Practical-LB-Gr11.indb 35 2019/10/02 10:14

36 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 2.3 Creating a shape continued

The code to create the shape:

 for i := 1 to 6 do
 begin
 sLine := ’’;
 for j := 1 to i do
 sLine := sLine +'*';
 memDisplay.Lines.Add(sLine);
 end;

 for i := 5 downto 1 do
 begin
 sLine := '';
 for j := 1 to i do
 sLine := sLine +'*';
 memDisplay.Lines.Add(sLine);
 end;

Activity 2.5

2.5.1 Study the code segment below and determine the output:

for i := 1 to 5 do
 begin
 sLine := '';
 for j := 1 to i do
 sLine := sline + IntToStr(i) ;
 memDisplay.Lines.Add(sLine);
 end;

2.5.2 Open the Shapes_p project in the 02 – Shapes Folder and do the following:

● Set the font property of the MemoBox to Courier New.
● Create an OnClick event for the [Pattern 1] button to create and display the

pattern alongside. The stars are separated by spaces. The memo component
must be cleared before displaying the pattern.

● Create an OnClick event for the [Pattern 2] button to create and display the
pattern below.
The memo component must be cleared before displaying the pattern.

*
* *

* * *
* * * *

* * * * *
● Create an OnClick event for the [Pattern 3] button to create and display the pattern below.

The memo component must be cleared before displaying the pattern.

*
* * *
* * * * *
* * * * * * *
* * * * * * * * *

IT-Practical-LB-Gr11.indb 36 2019/10/02 10:14

37TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.3 Creating shapes using nested loops

CONSOLIDATION ACTIVITY Chapter 2: Nested loops

QUESTION 1

1.1 Assume that the value for variable iSize is 5. Determine the output that will be
produced by the following code segment:

for i := 1 to iSize do
 begin
 sLine := '';
 for j := iSize downto i do
 sLine := sLine +'*';
 memDisplay.Lines.Add(sLine);
 end;

1.2 Study the code below:
for i := 1 to 4 do
begin
 for j := 1 to 4 do
 begin
 sLine := sLine + j + ' ';
 memOutput.Add(sLine);
 end;
end;

The code was written to produce the output below:
1 2 3 4

2 3 4

3 4

4

The program has errors. Correct the program so that it produces the correct
output.

QUESTION 2

2.1 Open the ConPatterns_p project in the 02 – ConShapes Folder and do the
following:

2.1.1 Code the OnClick event for the [Pattern 1] button to test your code for
question 1.2 above.

2.1.2 Code the OnClick event for the [Pattern 2] button to display the stars
as shown below. The stars are separated by spaces.

* * * * * *

 * * * * *

* * * * * *

 * * * * *

* * * * * *

IT-Practical-LB-Gr11.indb 37 2019/10/02 10:14

38 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 2: Nested loops continued

2.1.3 Code the OnClick event for the [Pattern 3] button to display the stars
as shown below. The stars are separated by spaces.

 *

 * *

 * * *

 * * * *

 * * * * *

* * * * * *

 * * * * *

 * * * *

 * * *

 * *

 *

QUESTION 3

3.1 A number is a perfect number if its factors (excluding the number itself) sums
up to the number.

Example: The factors of 6 are: 1 2 3 6.
1 + 2 + 3 = 6. Therefore 6 is a perfect number.

Open the PerfectNumber_p project in the 02 – Perfect Numbers Folder.
Create an OnClick event for the [Calculate] button to calculate the fi rst four
perfect numbers.
Sample Run:

3.2 Open the SecretMessage_p project in the 02 – Secret message folder.
The following interface will display when the program is run:

IT-Practical-LB-Gr11.indb 38 2019/10/02 10:14

39TERM 1 I CHAPTER 2 NESTED LOOPS I UNIT 2.3 Creating shapes using nested loops

CONSOLIDATION ACTIVITY Chapter 2: Nested loops continued

The following rules were applied to encode the secret message:

● All the characters were converted to uppercase.
● The characters in a word were rearranged only if the word length was three

or more characters. In the rearrangement, the last two characters of the word
were moved to the beginning of the word. Example the word ‘you’ became ‘ouy’.

● A space character was replaced by the ‘@’ character.
● The ‘A’ character was replaced by the ‘X’ character.

Write code for the OnClick event for the [Decode] button, using the rules above to
decode the secret message.

QUESTION 4

A multiplication tester program is designed to test the product of two numbers. The user
is prompted for the number of questions the user would like to work through. For each
question, two random numbers in the range 1 to 10 (inclusive) are generated and the
user is asked to supply the product. If correct, four points are awarded.

If incorrect, the user is given another chance; if correct this time, only two points are
awarded. If the user fails on the second chance, the program provides the answer and
no points are awarded.

Open the MultiplicationTester_p project in the 02 – Multiplication Tester Folder and
create an OnClick event for the [Tester] button to do the following:

● Read the number of questions from the EditBox edtNumQuestions.
● Generate two numbers iNum1 and iNum2 and display the numbers in the

edtNum1 and edtNum2 EditBoxes respectively.
● Prompt the user for the correct answers using an Input box.
● Display whether the answer is correct or incorrect using a ShowMessage box.
● Display the Points earned in the memDisplay box.

IT-Practical-LB-Gr11.indb 39 2019/10/02 10:14

40 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 2: Nested loops continued

Example output for Question 4

IT-Practical-LB-Gr11.indb 40 2019/10/02 10:14

41TERM 2 I CHAPTER 3 ARRAYS

TERM 2

CHAPTER

3ARRAYS

CHAPTER UNITS

Unit 3.1 Arrays

Unit 3.2 Searching and sorting arrays

Unit 3.3 Parallel arrays

 Learning outcomes

At the end of this chapter you should be able to:
● describe the concept of an array
● de� ne the structure and syntax of an array
● use different input sources to add data to arrays
● perform calculations using arrays
● format and display the output of an array
● describe the concept and use of parallel arrays
● use parallel arrays in calculations
● search for data in single and parallel arrays
● sort single and parallel arrays.

INTRODUCTION

In many applications, large amounts of data need to be stored and accessed
randomly. While it might be possible to create a variable for each data item that
needs to be stored (such as your website’s usernames and passwords), this
could cause a number of issues. These include:
1. It may require you to create thousands or even millions of variables.
2. You would need to update the code of your application and manually create

new variables every time the data changes (or someone new registers on
your website).

3. Since each of these variables are independent of the others and have
unique names, there is no easy way to loop through all of them.

So, instead of creating separate variables for each item, this chapter will teach
you how to create an array that can store multiple values in the same structure.

New words

homogenous – elements
of the same type

index – the position of the
element in an array

array – is a data structure
that store a set values
(elements) of the same type
liked to a single variable
name

IT-Practical-LB-Gr11.indb 41 2019/10/02 10:14

42 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

3.1

INTRODUCTION TO ONE-DIMENSIONAL ARRAYS
An array is a data structure that stores a set of values (elements) of the same

type (homogeneous) linked to a single variable name. During this year, we will be
working with one-dimensional (1D) arrays.

A one-dimensional array contains only one row for storing data. The elements in
an array are ordered. The ordering property implies that the � rst, second, …, last
element can be identi� ed or referenced.

Here is an example of a one-dimensional array, arrNames

Index 1 2 3 4 5
arrNames Arhaan Joyce Peter Andile Zinhle

Take note of the following:

The name of the array is arrNames. We add the pre� x arr to the name of the
array. A meaningful name, which is dependent on the contents it holds, should be
given to the array. This array contains elements of data type string. You can also
use arrays of data type integer, real or character.

Index refers to the position of the element in an array. An element in the array is
referenced using the name of the array and its index position within square
brackets. For example, arrNames[2] refers to the second element ‘Joyce’ in the
array; arrNames[4] refers to the fourth element ‘Andile’ in the array.

DECLARATION OF AN ARRAY
Just like a variable, an array must be declared before it is used. Here is an example
of the declaration of an array:

 arrName: array[StartIndex..LastIndex] of Type;

● The reserved word array indicates that it is an array data structure.
● [StartIndex..LastIndex] indicates the size of the array. StartIndex indicates

the starting position of the index and LastIndex indicates the last position of
the index. For example, [1..10] OR [21..30] OR [‘A’..’J’] OR [‘a’..’j’] indicates
that the array will hold 10 elements of data type.

● Type refers to the data type of the elements in the array. Remember that all
elements in an array must have the same data type. This can be strings,
integers, reals or even components (like labels or images).

● Each element is referenced by the name of the array followed by its index
position. For example,
arrName[3]
arrName[i] where i is in the range 1 to lastIndex

● Delphi has a feature that allows you to check whether you are within a range
of the array by adding the {$R+} in the implementation section of the
program:
 Implementation

{$R *.dfm}
{$R+}
This is an instruction to the compiler to do range checking.

DELPHI ARRAYS

https://www.youtube.com/
watch?v=a7V8P4zE0ss

TRO –SHORT LINK

Take note

“Range check error” will
appear if you try an access
an element outside the
index range.
● The elements of an

integer array declared
non-locally (globally)
will by default be
assigned 0.

● The elements of an
integer array declared
locally will by default be
assigned random
values.

● The elements of a
string array will by
default be assigned null
values. However, it is
good practice to
initialise the values of
an array.

Remember!

An integer variable
declared non-locally
(globally) will by default be
assigned 0.

Arrays

 UNIT

IT-Practical-LB-Gr11.indb 42 2019/10/02 10:14

43TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.1 Arrays

DECLARING AND POPULATING AN ARRAY SIMULTANEOUSLY
You can declare and populate an array at the same time. Like variable declarations, an array can be a
constant array or an array where elements can vary.

DECLARING AND POPULATING A CONSTANT ARRAY
You can declare a constant array, which means that the elements in this array cannot be modi� ed. This
constant declaration can be declared locally or non-locally.

const
 arrDays:array[1..7]of string = ('Sun','Mon','Tue','Wed','Thur','Fri','Sat');
arrMonths:array[1..12] of string = ('Jan','Feb','Mar','Apr','May','Jun','July',
'Aug','Sept','Oct','Nov','Dec');

DECLARING AND POPULATING A NON-CONSTANT ARRAY
The elements in this array can be modi� ed and this array can be declared locally or non-locally.

Var
 arrNames:array[1..6] of String = ('Tom','Jerry','Mickey', 'Mouse',
'Daisy','Donald');
 arrPoints:array[1..10] of integer = (56,45,78,36,45,62,25,78,96,25);

POPULATING AN ARRAY

ASSIGNING VALUES TO AN ARRAY IN A SPECIFIC POSITION
The statements below demonstrate how elements in an array are assigned values:

arrNames[1] := 'Arhaan';
arrValue[7] := Sqr(5) ;
arrNumPeople[iCount] := 6;
arrMaxRainfall[i] := arrMaxRainFall[i + 1];
arrMark[4] := StrToInt(edtMark.text);

ASSIGNING FIXED VALUES TO AN ARRAY
Array arrSchools is declared non-locally (globally). This method of assigning � xed values are used when
the values are relatively � xed and the likelihood of it changing are slim. The code below is implemented on
a formActivate event.

procedure Tform1.FormActivate(Sender: Tobject);
begin
 arrSchools[1] := 'New Forest';
 arrSchools[2] := 'Stanger High';
 arrSchools[3] := 'Mountview High';
 arrSchools[4] := 'Fairmont High';
 arrSchools[5] := 'Mandini Academy';
end;

IT-Practical-LB-Gr11.indb 43 2019/10/02 10:14

44 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

READING DATA INTO THE ELEMENTS OF AN ARRAY FROM THE USER
To add values to an array, an InputBox is commonly used with a FOR-loop:

for i := 1 to 5 do
 arrScores[i]:=StrToInt(InputBox('Scores','Enter score',''));

By using the InputBox with an array and a FOR-loop, you can ask the user to enter a value for each
element of the array.

DISPLAYING ELEMENTS FROM AN ARRAY

DISPLAYING AN ELEMENT FROM AN ARRAY
You can display individual elements of an array. Here is the code you can use to display individual elements:

ShowMessage(arrName[1]); // display the element from index position 1
memDisplay.Lines.Add('The 7th element is: '+ IntToStr(arrValue[7]));

DISPLAYING ALL THE ELEMENTS IN AN ARRAY
Suppose you have � ve elements in arrScore and you want to display these elements in the MemoBox
memDisplay. You can do this as follows:

Method 1: Displaying elements using an output statement for each element

memDisplay(IntToStr(arrScore[1]));
memDisplay(IntToStr(arrScore[2]));
memDisplay(IntToStr(arrScore[3]));
memDisplay(IntToStr(arrScore[4]));
memDisplay(IntToStr(arrScore[5]));

Method 1 is � ne as long as you have only a few elements in the array. However, what happens when you
have 100 elements. Using this program will become cumbersome because you will have 100 output
statements. Instead, you can use a loop to display a large amount of elements.

Method 2: Using a loop to display elements

For i := 1 to 5 do
 memDisplay.Lines.Add(IntToStr(arrScores[i]);

Take note

We access all � ve elements in the array using a loop. There are � ve elements in the array and we
run the loop from 1 to 5. The loop counter is linked to the index position of the elements in an array.
Each time the loop counter is incremented, it points to the next element in the array.

IT-Practical-LB-Gr11.indb 44 2019/10/02 10:14

45TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.1 Arrays

Activity 3.1

3.1.1 Pen and paper activity. Write down code that will do the following:

● Declare an array called arrName that can store three string values.
● Store the names of a friend, a family member and a pet in the array (in that

order).
● Use the ShowMessage method to display the following names:

a. Pet’s name

b. Family member’s name

3.1.2 Pen and paper activity. Write down code that will do the following:

Declare the following four array variables.

NAME INDEX TYPE

arrAlphabet 1 to 26 Char

arrProvinces 1 to 9 String

arrAges 1 to 120 Integer

arrCardInDeck 1 to 52 Boolean

Assign the name of South Africa’s nine provinces into an array arrProvinces.

Assign the value FALSE to every second value of array arrCardInDeck.

Create a FOR-loop that assigns random numbers between
1 and 20 (inclusive) to array arrNumbers. Array arrNumbers
is type integer containing 50 elements.

3.1.3 Open the TestMarks_p project in the 03 – Test Marks
Folder. The project is supposed to display the marks of the
learners which are stored in the array. However, there are
errors in the program. Correct the errors in the program so
that it produces the correct output as shown on the right
hand side.

3.1.4 Open the FamilyTree_p project in the 03 – Family Tree Folder and do the following:

a. Declare a non-local (global) array called arrNames since the values in this array
will be accessed by each of the buttons.

b. Create an OnCreate event for the form to assign the name of a family member
to each of the elements in the array:
Father: John
Mother: Mary
Brother: Peter
Sister: Sarah

c. Create an OnClick event for [Father] button to display the name of the father
from the array in a ShowMessage box and also added to the ListBox lstFamily.

d. Create OnClick events for the [Mother], [Brother] and [Sister] buttons to display
the relevant names from the array in a ShowMessage dialogue box and in the
ListBox lstFamily.

IT-Practical-LB-Gr11.indb 45 2019/10/02 10:14

46 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 3.1 continued

e. Save and test your application. You should now be able to display the names of
your different family members by clicking on their buttons.

3.1.5 The names of games are stored in an array. Open the GameNames_p project in
the 03 – Game Names Folder and do the following:

a. Write code for the [Display] button to display the names of the games.

b. Write code for the [New] button to add the text ‘New’ to every second element
of the array starting from the � rst element.

c. Write code for the [Select] button to randomly select a game and display the
name of the game using a DialogBox.

d. Write code for the [Reverse] button to reverse the characters of each element
in the array. Display the array.

IT-Practical-LB-Gr11.indb 46 2019/10/02 10:14

47TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.1 Arrays

BASIC MATHEMATICAL OPERATIONS
We can manipulate an array to perform mathematical calculations.

Let’s � nd the maximum value and the position of the maximum value in an array.

...

{1} iMax := arrMarks[1];
{2} iPosition := 1;
{3} for i := 2 to 5 do
{4} begin
{5} if arrMarks[i] > iMax then
{6} begin
{7} iMax := arrMarks[i];
{8} iPosition := i;
{9} end;
{10} end;
{11} memDisplay.Lines.Add('The highest mark: '+ IntToStr(iMax) +' at

position '+ IntToStr(iPosition));

…

Assume that arrMarks contains the following values: 45, 90, 12, 40 and 72. Let’s trace through the code
segment above.

i iMAX iPOSITION arrMARKS[I] i <= 5 arrMARKS[I] > iMAX OUTPUT

arrMarks[1]:=45

arrMarks[2]:=90

arrMarks[3]:=12

arrMarks[4]:=40

arrMarks[5]:=72

1 45

2 1

3 2 TRUE

5 TRUE

7 90

8 2

3 3 TRUE

5 FALSE

3 4 TRUE

5 FALSE

3 5 TRUE

5 FALSE

3 6 FALSE

11 The highest mark is
90 at position 2

IT-Practical-LB-Gr11.indb 47 2019/10/02 10:14

48 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 3.2

The marks are stored in array arrMarks. Open the MathsCalc_p project in the 03 – Math
Calc Folder and write code for the following buttons:

● [Display] button to display the elements of the array.
● [Average] button to � nd and display the sum and average of the marks.
● [Product] button to � nd and display the product of the elements.
● [Range] button to � nd and display the highest and lowest mark and the position of the

highest and lowest mark in the array and the range of the marks. The range is the
difference between the highest and lowest mark.

● [Percentage] button to convert each mark to a percentage. The marks are out of
60 marks. Display the original mark and the rounded percentage calculated to zero
decimal places.

C OUNTING ELEMENTS BASED ON A CRITERIA
When we need to determine how many elements there are in an array that meet
a speci� ed criterion, you can use a counting algorithm. Counting uses a linear
approach where you loop through the array and test each item based on the
criteria speci� ed. Should the element meet the criteria, you increment the counter
variable by one. Look at the following algorithm that shows how this works in
practise:

Algorithm
Count ← 0
For loop i ← 1 to length of array
 If array[i] matches criteria
 Count ← Count + 1
End FOR-loop

Activity 3.3

3.3.1 An array called arrNumbers has been declared. Open the Counters_p project in the
03 – Counters Folder and write code for the following:

a. [Even/Odd] button: Determine and display the number of even and odd
numbers.

b. [Negative/Positive] button: Determine and display the number of negative and
positive numbers. Remember that zero is neither negative nor positive.

IT-Practical-LB-Gr11.indb 48 2019/10/02 10:14

49TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.1 Arrays

Activity 3.3 continued

c. [Composite] button: Determine how many numbers are composite. A composite
number is a number that has more than two factors.

All outputs must be accompanied by suitable messages.

3.3.2 An array called arrNames has been declared. Open the ClassList_p project in the
03 – Class List Folder and write code for the [Find by letter] button to prompt the
user to input a letter of the alphabet (use an InputBox). Count how many names in
the given array arrNames begin with the letter provided by the user. Display the
count value using a dialogue box.

USING AN ARRAY AS A COUNTER
You can also use an array as a counter.

Example 3.1

Your school plans a market day to raise funds. The schools will have 10 stalls selling
different categories of items. They need to keep track of the popularity of each stall for
future planning.

Since we are counting the popularity of 10 stalls, we would need to use 10 counter
variables. This will become too cumbersome. A better solution would be to use an array
as a counter where each stall is numbered from 1 to 10 and associated with each
index position of an element in an array.

You need to set each element in the counter array to zero as shown below:

Index 1 2 3 4 5 6 7 8 9 10

arrPopCount 0 0 0 0 0 0 0 0 0 0

As customers visit a stall, the corresponding element matching the stall number is
updated. If a customer visited stall number 3, the element at index position 3 is
incremented by one.

Index 1 2 3 4 5 6 7 8 9 10

arrPopCount 0 0 1 0 0 0 0 0 0 0

To determine the most popular stall, you need to � nd the stall with the highest number
of customers.

Activity 3.4

3.4.1 Using the school market day example, open the PopularStall_p project in the
03 – Popular Stall Folder and write code for the following:

● Declare an array arrPopCount.
● [Update Visits] button: Every time this button is clicked, a random number in the

in the range 1 to 10 is generated. This number represents the stall number that
a customer has visited. The randomly generated number will be displayed on a
label lblStallNumber. Keep count of the stalls visited using the array
arrPopCount. Display the stalls visited as each stall is visited.

● [Determine Most Popular] button: Determine and display the most popular stall.

IT-Practical-LB-Gr11.indb 49 2019/10/02 10:14

50 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

INSERTING AND DELETING ELEMENTS IN AN ARRAY

INSERTING AN ELEMENT IN AN ARRAY
You can insert an element into a speci� c position in an array.

Example 3.2

Let’s insert a value, 56, at the 4th position in the array below:

Index 1 2 3 4 5 6 7 8 9 10

arrHighScores 45 25 18 62 71 32 28 17 59 85

Remember, the number of elements in the array increases by one so the upper bound of
the array must be increased by one.

All the elements from the 4th position must move to the right starting with moving the
last element � rst:

 arrHighScores[11] := arrHighScores[10];
 arrHighScores[10] := arrHighScores[9];
 …
 arrHighScores[5] := arrHighScores[4];
 The code for the movement of the elements:
 for i := 10 downto 4 do
 arrHighScores[i + 1] := arrHighScores[i];

Alternatively:
 for i := 11 downto 5 do
 arrHighScores[i] := arrHighScores[i-1];

You cannot start the movement of elements from the 4th element � rst, because it will
overwrite the values on the right-hand side.

Now insert the value 56 at the 4th position: arrHighScores[4] := 56;

Index 1 2 3 4 5 6 7 8 9 10 11

arrHighScores 45 25 18 56 62 71 32 28 17 59 85

DELETING AN ELEMENT FROM AN ARRAY
You can delete an element from a speci� c position in an array.

Example 3.3

Let’s delete the value 18 from the 3rd position in the array below:

Index 1 2 3 4 5 6 7 8 9 10

arrHighScores 45 25 18 62 71 32 28 17 59 85

IT-Practical-LB-Gr11.indb 50 2019/10/02 10:14

51TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.1 Arrays

Example 3.3 continued

All the elements from the 4th position must move to the left starting with the movement of the element at the 4th

position � rst:

 arrHighScores[3] := arrHighScores[4];
 arrHighScores[4] := arrHighScores[5];
 …
 arrHighScores[9] := arrHighScores[10];
 The code for the movement of the elements:
 for i := 3 to 9 do
 arrHighScores[i] := arrHighScores[i + 1];

Alternatively:
 for i := 4 to 10 do
 arrHighScores[i-1] := arrHighScores[i];

Although we moved the elements to the left, the last element still exists.

Index 1 2 3 4 5 6 7 8 9 10

arrHighScores 45 25 56 62 71 32 28 17 59 59

When we display, we must only display the � rst nine elements.

REMOVING DUPLICATE ELEMENTS IN AN ARRAY
When we want to remove duplicate elements in an array, we use two arrays.

Example 3.4

We want to remove duplicate names from an array arrNames. The array represented below is split in two lines due
to space constraints.

Index 1 2 3 4 5 6 7 8 9 10

arrNames Sanele Sanele Simon Helen Michele Ulrich Ulrich Ulrich Roland Gerry …

Index 11 12 13 14 15 16 17 18 19

arrNames Henry Ulrich Si� so Roland Gerry Sue Frankie Andrew Gerry

Follow the steps below:

● Use a second array arrTemp to hold the non-duplicate values.
● Declare array arrTemp to hold the same number of values as array arrNames to cater for the case where

arrNames may not contain any duplicate values and hence all the values from arrNames will be copied to
arrTemp.

● Loop through each element in arrNames and check whether it appears in arrTemp.
● If it does not appear in arrTemp, then the element is added to arrTemp.

IT-Practical-LB-Gr11.indb 51 2019/10/02 10:14

52 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Here is the code to remove duplicate values:

//The fi rst element in arrTemp is set to fi rst element in arrNames

arrTemp[1] := arrNames[1];

// iCounter will keep count of the number of elements in arrTemp
//Since the fi rst element is assigned to arrTemp, iCounter set to 1

iCounter := 1;

//Loop through each element in arrNames. Loop starts from 2 because the fi rst
//element is catered for

for i := 2 to 19 do
 begin

 //Boolean variable bFlag to check whether a duplicate match is found
 //in arrTemp.

 bFlag := true;

 //Initialise counter value for inner loop to loop through the elements
 //of arrTemp.

 j := 1;

 //The loop terminates either when a match is found or when the last
 //element in arrTemp is reached

 while (j <= iCounter) AND (bFlag = True) do
 begin

 //Check whether the element in arrNames has a match in arrTemp

 if arrNames[i] = arrTemp[j] then
 begin
 // bFlag set to false as soon as a match is found in arrTemp
 bFlag := false;
 end;
 // Increment inner loop value
 inc(j);
 end; // end inner loop

 //If no match is found then increment the counter for arrTemp and
 //store the value of the element in arrNames in the new counter
 //position in arrTemp

 if bFlag then
 begin
 Inc(iCounter);
 arrTemp[iCounter] := arrNames[i];
 end;
 end;

 // Copy the values from arrTemp into arrNames

 for i := 1 to iCounter do
 arrNames[i] := arrTemp[i];

IT-Practical-LB-Gr11.indb 52 2019/10/02 10:14

53TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.1 Arrays

Activity 3.5

SuperSmart Factories requires a program to assist them with processing the placement of weekly shifts for staff
members. Every time a staff member clocks-in, their name is added to an array named arrStaff. The maximum number
of shifts is 50, however, the exact number of names present in the array is stored in the global variable iCount.

3.5.1 Open project StaffShifts_p in the 03 – Staff Shifts Folder. The following interface is provided:

3.5.2 Write code for the [Insert Shift] button that will:

● Prompt the user to input the name of the staff
member using an Input Box.

● Insert the new shift at position 5 in the array.
● Increment the value of iCount by 1.

3.5.3 Write code for the [Delete Shift] button that will:

● Prompt the user to input the position they wish to
delete using an Input Box.

● Remove the speci� ed value from the array.
● Decrease the value iCount by 1.

IT-Practical-LB-Gr11.indb 53 2019/10/02 10:14

54 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 3.5 continued

3.5.5 At the end of every week, all staff shifts are reset to a value of 1. This means that
each staff member’s name should appear in the array only once.

Write code for the [Reset Staff Shifts] button that will:

● Iterate through the array arrStaff and remove all duplicates.
● Modify the value of iCount to re� ect the number of items remaining in the array

after the duplicates have been removed.

IT-Practical-LB-Gr11.indb 54 2019/10/02 10:14

55TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.2 Searching and sorting arrays

SEARCHING ARRAYS
When working with large amounts of data, it is impossible to know the exact location of each element. So,
if you want to search and locate speci� c elements in an array, you could use two methods:
● linear search
● binary search.

LINEAR SEARCH
When using a linear search, you can loop through the elements of the array to � nd the value that you are
looking for. The loop will terminate when the:
● value is found
● last index position is reached and the value is not found.

To search for the � rst occurrence of a value in an array, you can use the following code:

 i := 1;
 iPos := 0;
 bFlag := false;
 sSearch := Input('Name','Enter name','');
 while (i <= 10) and (bFlag = false) do
 begin
 inc(i);
 if arrNames[i] = sSearch then
 begin
 bFlag := true;
 iPos := i;
 end;
 end;
 if bFlag = true then
 memDisplay.Lines.Add('Found: ' + arrNames[iPos])
 else
 memDisplay.Lines.Add(sSearch + ' not found’);

To search for all occurrences of a value in an array, you can use the following code:

…
Const
 arrNames:array[1..10] of string = ('Jack','Sanele','Alonso',
'Arhaan','Zinhle','Brian','Paul','Sarah','Akira','Zainab');
…
sSearch := Input('Name','Enter name','');
bFlag := false;
for i := 1 to length(arrNames) do
 begin
 if sSearch = arrNames[i] then
 begin
 bFlag := true;
 memDisplay.Lines.Add(arrNames[i]);
 end;
 end;
if bFlag = false then
 memDisplay.Lines.Add(‘Name not found’);

New words

linear search – is a
process that checks every
element in the list
sequentially until the
desired element is found

binary search – is an
algorithm used in computer
science to locate a
speci� ed value (key) within
an array

Take note

The length method of
array returns the length
of the array. The length
method is used when
the array is pre-
populated.

Searching and sorting arrays3.2

UNIT

IT-Practical-LB-Gr11.indb 55 2019/10/02 10:14

56 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

SORTING ARRAYS
Arrays can be sorted in ascending or descending order. This year you will learn
about two ways in which arrays can be sorted:
● bubble sort
● selection sort.

BUBBLE SORT
The bubble sort compares adjacent elements. To sort elements in descending
order, compare two adjacent elements. If the � rst element is less than the second
element then swap the elements.

Pass 1 :

1 2 3 4 5

arr 6 10 3 2 9

arr[1] < arr[2] → true; swop elements

1 2 3 4 5

arr 10 6 3 2 9

arr[2] < arr[3] → false
arr[3] < arr[4] → false
arr[4] < arr[5] → true; swop elements

1 2 3 4 5

arr 10 6 3 9

Because this is a descending sort, the smallest element “bubbles” to the last
position in the array.

Pass 2 :

1 2 3 4 5

arr 10 6 3 9 2

arr[1] < arr[2] → false
arr[2] < arr[3] → false
arr[3] < arr[4] → true; swop elements

1 2 3 4 5

arr 10 6 9 2

New words

bubble sort – to compare
adjacent elements

selection sort – to select
the element that should go
in each array position either
in ascending or descending
order sequence

2 The smallest element
“bubbles” to the last position

3
The second smallest element is
stored in the second last position

IT-Practical-LB-Gr11.indb 56 2019/10/02 10:14

57TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.2 Searching and sorting arrays

Pass 3 :

1 2 3 4 5

arr 10 6 9 3 2

arr[1] < arr[2] → false
arr[2] < arr[3] → true; swop elements

1 2 3 4 5

arr 10 9 3 2

Pass 4 :

1 2 3 4 5

arr 10 9 6 3 2

arr[1] < arr[2] → false

The list is fully sorted in descending order.

The checks take place as follows:

PASS 1 PASS 2 PASS 3 PASS 4

First
Element
Index

i

Second
Element
Index

i + 1

First
Element
Index

i

Second
Element
Index

i + 1

First
Element
Index

i

Second
Element
Index

i + 1

First
Element
Index

i

Second
Element
Index

i + 1

1

2

3

4

2

3

4

5

1

2

3

2

3

4

1

2

2

3

1 2

You can write the bubble sort program using a nested FOR-loop. The outer loop is determined by the
number of passes to be made. The inner loop always starts from index position 1 and ends with each
pass at 5, 4, 3 and 2 consecutively.

6
The third smallest element is
stored in the third last position

IT-Practical-LB-Gr11.indb 57 2019/10/02 10:14

58 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Here is the code for a bubble sort using two nested FOR-loops:

 ….
 int [] arr = (5,9,2,1,8);
 int temp;
 for i:=arr.length-1 downto 1 do
 for j:=0 to i do

 if (arr[j]<arr[j+1])
 Begin
 temp=arr[j];
 arr[j]=arr[j+1];
 arr[j+1]=temp;
 End;
 ….

BUBBLE SORT USING A FLAG
Although the bubble sort is a more ef� cient sort than the selection sort, the bubble sort program segment
above is a � xed pass sort, that is, it will do all the passes even if the array is already sorted. The bubble
sort with a � ag is an improvement of the bubble sort. It is not a � xed pass sort. The order of the elements
in the array in� uences the number of times the nested loop will be executed.

The bubble sort with a � ag works as follows:
● the outer FOR-loop becomes a WHILE-loop
● a Boolean variable bFlag is set to true to assume that the array is already sorted. If any swopping

takes place in the inner loop, then the array is still not sorted and Boolean variable bFlag is set to
FALSE.

Here is the code for a bubble sort with a � ag:

…
 repeat
 bFlag := true;

 for j := 1 to 9 do
 begin
 if arrNumbers[j] > arrNumbers[j + 1] then
 begin
 iTemp := arrNumbers[j];
 arrNumbers[j] := arrNumbers[j + 1];
 arrNumbers[j + 1] := iTemp;
 bFlag := false;
 end;
 end;
 until bFlag = true;
…

SELECTION SORT
The selection sort is one of the simplest sorting algorithms. Although it is an easy sort to program, it is one
of the least ef� cient. The algorithm offers no way to end the sort early, even if it begins with an already
sorted list. It works by selecting the element that should go in each array position either in ascending or
descending order sequence.

Outer loop

• Loop executed four times

• Loop starts at four and moves downto 1

• Downto loop because it will in� uence the
inner loop’s end value

Inner loop

• End value received from outer loop

• First time it will receive value 4

• Second time it will receive value 3

• Third time it will receive value 2

• Fourth time it will receive value 1

Adjacent elements compared

Boolean variable bFlag:

• Set to FALSE – indicates array not sorted

• Set to TRUE – indicates array is sorted

New words

assume – supposed to be
the case, without proof

IT-Practical-LB-Gr11.indb 58 2019/10/02 10:14

59TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.2 Searching and sorting arrays

Steps to sort an array in ascending order:
● Step 1: Compare the element at index position1 with each element in the

array. If the element at index position1 is greater than the element it is being
compared to, then the elements must be swapped.

Example:

1 2 3 4 5

arr 6 10 4 9 2

arr[1] > arr[2] → false
arr[1] > arr[3] → true, then swop elements arr[1] and arr[3]

1 2 3 4 5

arr 4 10 6 9 2

arr[1] > arr[4] → false
arr[1] > arr[5] → true, then swop elements arr[1] and arr[5]

1 2 3 4 5

arr 2 10 6 9 4

At the end of the comparisons for index position1, the smallest element is in
index position1

● Step 2: Compare the element at index position2 with each element in the
array after index position2. If the element at index2 is greater than the
element it is being compared to, then the elements must be swapped.

Example:

1 2 3 4 5

arr 2 10 6 9 4

arr[2] > arr[3] → true, then swop elements arr[2] and arr[3]

1 2 3 4 5

arr 2 6 10 9 4

arr[2] > arr[4] → false
arr[2] > arr[5] → true, then swop elements arr[2] and arr[5]

1 2 3 4 5

arr 2 4 10 9 6

At the end of the comparisons for index position2, the second smallest element
is in index position2.

● Step 3: Continue in this way for all the locations of the array. In the last step
only one comparison takes place. The second last element arr[4] will be
compared to the last element arr[5].

● The selection sort will be implemented using nested loops.
● An element has to be kept constant until it is compared to every element to

its right. The index position of the outer loop (variable i) is used to keep an
element constant.

IT-Practical-LB-Gr11.indb 59 2019/10/02 10:14

60 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

● The inner loop (variable j) caters for the indices of the elements to the right of the constant element
● The comparisons take place as follows based on the index positions:

STEP 1 STEP 2 STEP 3 STEP 4

Outer loop
– i

Inner loop
– j

Outer loop
– i

Inner loop
– j

Outer loop
– i

Inner loop
– j

Outer loop
– i

Inner loop
– j

1 2

3

4

5

2 3

4

5

3 4

5

4 5

Here is the code for a selection sort:

 …
 // declare and initialize array elements
 int [] arr = (5,9,2,8,1);
 int temp;

 // outer loop holds index of element being compared
 for i := 1 to arr.length-1 do
 // inner loop hold index of elements being compared to
 for j := i+1 to arr.length do
 // checks if the element is > the element being compared to
 if (arr[i]>arr[j])
 Begin
 // if true, swop elements
 temp=arr[i];
 arr[i]=arr[j];
 arr[j]=temp;
 End;

IT-Practical-LB-Gr11.indb 60 2019/10/02 10:14

61TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.2 Searching and sorting arrays

Activity 3.6

3.6.1 Open SortApp_p in the 03 – Sort Application folder. The following interface has
been provided:

The code for the [Generate Elements] button has been provided that populates and
displays the array with the number of elements speci� ed in the SpinEdit. Note that
the number of items in the array is stored in the global variable iItems.

3.6.2 Write code for the [Selection Sort Descending] button that will sort the array in
Descending Order using the Selection Sort algorithm. Display the array in the
Memo Box memSorted.

3.6.3 Write code for the [Bubble Sort Ascending] button that will sort the array in
Ascending Order using the Bubble Sort algorithm. Display the array in the
Memo Box memSorted.

IT-Practical-LB-Gr11.indb 61 2019/10/02 10:14

62 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

BINARY SEARCH
Whilst the linear search is effective with smaller arrays, larger arrays would result in very poor ef� ciency in
terms of the number of tests that need to be made to search for a speci� c value. The search would start
at the beginning of the array and terminate only once the speci� c value is found. So, if an array has 10 000
elements and the speci� c value is found in the second last position, the linear search will run up to 9 999
tests for the speci� c value. In the worst case scenario, all elements will be tested if the speci� c value is not
found in the array. This means that if the array has 10 000 elements, then 10 000 tests will be made.

The binary search is a much more ef� cient method of locating a speci� c value in larger arrays. It searches
for a speci� c value in a sorted array. The array can be sorted in ascending or descending order.

Let’s assume that we want to search for the value 222 in an array. The binary search works as follows:

● Step 1: Ensure that the array is sorted.

Index 1 2 3 4 5 6 7 8 9 10

arrNumbers 85 99 158 159 180 199 201 222 248 301

● Step 2: We need to search within a range in the array. The range is given by a lower bound (start
index position) and an upper bound (end index position). We need to � nd the mid-position of this
search range.
 To � nd the mid-position of the search range:

mid-position ← (lowerBound + upperBound) div 2

 In the initial search range (index positions 1 to 10) the
mid-position is 5. The element at position 5 is 180.

● Step 3: Test 1: We test whether the element (180) at the mid-position is equal to the search
value (222). If the test is TRUE, then the value is found and the search ends. In this case the test is
FALSE.
 Test 2: If test1 is FALSE, then we test whether the search value is less than the mid-position

element. If the test2 is TRUE, then it means:
— the search value is on the left of the mid-position element and that the search range will now

focus on these elements.
— all elements from the mid-position element to the last element in the search range can be

eliminated from the search.

 The upperBound is set to mid-position-1. The lowerBound is still 1:

Index 1 2 3 4 5 6 7 8 9 10

arrNumbers 85 99 158 159 180 199 201 222 248 301

 Test 3: If test2 is FALSE, then we test whether the search value is greater than the mid-position
element. If the test3 is TRUE, then it means:
— the search value is on the right of the mid-position element and that the search range will now

focus on these elements.
— all elements from the mid-position element to the � rst element in the search range can be

eliminated from the search.

New words

sorted – to sort an element
in numerical order

IT-Practical-LB-Gr11.indb 62 2019/10/02 10:14

63TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.2 Searching and sorting arrays

 The lowerBound is set to midposition +1

Index 1 2 3 4 5 6 7 8 9 10

arrNumbers 85 99 158 159 180 199 201 222 248 301

● Step 4: Go back to step 2 until the search value is found or the start index value is greater than end
index value.
 Look at the pseudocode below for this search:

PSEUDOCODE
// The array is sorted in ascending order
searchValue ← User Input
lowerBound ← 1
upperBound ← Length(array)
Found ← FALSE
While (Found = false) and (lowerBound <= upperBound)
begin
 Midpoint ← (Start + End) div 2
 If searchValue = array[Midpoint]
 Found ← TRUE
 Else
 If searchValue > array[Midpoint]
 lowerBound ← Midpoint + 1
 Else
 upperBound ← Midpoint – 1
end while

Activity 3.7

3.7.1 Open the BinarySearch_p project and write code for the following:

● [Generate] button: to generate 20 values in the range 10 to 99 and store the values in an array.
● [Sort] button: Sort the array in descending order.
● [Display] button: Display the elements in the array.
● [Search] button: Prompt the user to enter a number in the range 10 to 99. Determine whether the number is

found in the array using the binary search. If the number is found, then display the number and its position
in the array. If the number is not found in the array, an appropriate message must be displayed.

Search value is found

• The search value lies to the left
of the midpoint when the array is
sorted in ascending order

• The search value lies to the left
of the midpoint when the array is
sorted in ascending order

• The search value lies to the right
of the midpoint when the array is
sorted in ascending order

• The upper bound of the search
range is set to one less than the
midpoint

IT-Practical-LB-Gr11.indb 63 2019/10/02 10:14

64 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Remember that an array can only store elements of the same data type. However, if you want to store
related information of different data types, you need different arrays. For example, if you want to store the
names and marks of learners, then you need to store the names in one array and the marks in another
array. But, the names and marks are related. Each element in one array is linked to an element in the
second array by its index position. For example, in the arrays below, Peter’s name is stored in arrNames[3]
and his mark is stored in arrMarks[3].

These linked arrays are called parallel arrays.

1 2 3 4 5

arrNames John Mary Peter Sarah Sanele

1 2 3 4 5

arrMarks 56 78 91 65 81

SORTING PARALLEL ARRAYS
When you sort an array, elements are swapped. When you use parallel arrays and you want to sort, for
example, the arrMarks array in descending order to create a merit list, the linked elements in the parallel
array arrNames must be swapped simultaneously.

Look at the code below that shows how elements in parallel arrays can be swapped:

…
for i := 1 to 4 do
begin
 for j := i + 1 to 5 do
 begin
 if arrMarks[i] < arrMarks[j] then
 begin
 iTemp := arrMarks[i];
 arrMarks[i] := arrMarks[j];
 arrMarks[j] := iTemp;
 sTemp := arrNames[i];
 arrNames[i] := arrNames[j];
 arrNames[j] := sTemp;
 end;
 end;
end;
…

SEARCHING PARALLEL ARRAYS
To search for a speci� c value in one array and access the corresponding element in the linked array, you
can search for the speci� c value in the one array and if a match is found, use the index position of the
match to access the element from the linked array.

New words

related information –
information belonging in
the same group

Parallel arrays3.3

UNIT

IT-Practical-LB-Gr11.indb 64 2019/10/02 10:14

65TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.3 Parallel arrays

Look at the code below that shows how elements in parallel arrays can be searched:

 i := 1;
 iPos := 0;
 bFlag := false;
 sSearch := Input('Name','Enter name','');
 while (i <= 10) and (bFlag = false) do
 begin
 if arrNames[i] = sSearch then
 begin
 bFlag := true;
 iPos := i;
 end;
 inc(i);
 end;
 if bFlag = true then // or if iPos > 0 then
 memDisplay.Lines.Add(‘Found: '+ arrMarks[iPos])
 else
 memDisplay.Lines.Add(sSearch + ' not found');

Activity 3.8

Open project SearchingSorting_p that provides the following user interface:

The [Load Data] button given, has been coded to populate four parallel arrays:

● arrNames: An array of type String that holds 20 learners’ names.
● arrAssignment: A parallel array of type Integer that holds 20 learners’ assignment

marks.
● arrExam: A parallel array of type Integer that holds 20 learners’ exam marks.
● arrAverages: A parallel array of type Real that will be populated during the activity.

Write code for each of the buttons (1 – 9) to perform the following tasks:

● [1] button: Display the Assignment Mark and Exam Mark for ‘Shaleena’ (Element 6).
● [2] button: Calculate and display the average Assignment Mark.
● [3] button: Determine and display the name of the learner with the lowest Exam Mark.

Index position of element = sSearch

Take note

The exam and
assignment arrays are
randomly generated
and therefore will not
match the screenshot
above.

IT-Practical-LB-Gr11.indb 65 2019/10/02 10:14

66 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 3.8 continued

● [4] button: Calculate the average of each learner’s score [(Exam Mark + Assignment
Mark)/2] and store the calculated value in its corresponding position in arrAverages.
Display a con� rmation message that the averages were calculated successfully.

● [5] button: Display a list of learner names who have scored above the average exam
mark. Display a heading displaying the average exam mark followed by the list of names.

● [6] button: Determine and display the learner with the highest exam mark.
● [7] button: Prompt the user to input a Name to search for using an Input Box. Use the

Linear Search to identify the name. If the name is found, display the learner’s
Assignment, Exam and Average marks. If the name is not found, display a suitable
message to the user.

● [8] button: Use either the Bubble Sort or Selection Sort to sort the arrays based on the
learners’ names (arrNames). The names should be sorted alphabetically and the display
should be updated in the three MemoBoxes.

● [9] button: Prompt the user to input a Name to search for using an Input Box. Use the
Binary Search to identify the name. If the name is found, display the learner’s
Assignment, Exam and Average marks. If the name is not found, display a suitable
message to the user.

IT-Practical-LB-Gr11.indb 66 2019/10/02 10:14

67TERM 2 I CHAPTER 3 ARRAYS I UNIT 3.3 Parallel arrays

CONSOLIDATION ACTIVITY Chapter 3: Arrays

QUESTION 1: Paper-based activity

You have three parallel arrays containing data, as shown below.

There are 400 seats in total in Parliament. The number of seats each party gets is determined by their ratio of votes.

arrCandidates arrVotes arrSeats

Digital Party 11750

Data Party 98115

USB Party 11391

Android Party 49415

1.1 Determine the total votes cast by calculating the sum of the values in arrVotes. Store the sum in a global
variable called iTotal.

1.2 Use iTotal (from 1.1) to determine the number of seats each party will get. The number of seats depends on
the ratio of votes that a particular party received. Store the number of seats for each party in arrSeats.
(Round your answer to an Integer value).

1.3 Write code to determine which party received the highest number of votes. Display the Party name
(from arrCandidates) and the number of votes (from arrVotes).

1.4 Create a sorting algorithm and � owchart that can be used to sort arrVotes in descending order.

1.5 Create code that can be used to sort all the arrays based on the number of seats in Parliament; arranged
in ascending order.

QUESTION 2

For this application, open the project saved in the 03 – Question 2 – Password Strength Folder. Once done, save the
project in the same folder. For this question, an array called arrPasswords has been declared and populated in the
[Generate 20 Random Passwords] button.

2.1 Write code for the [Test Password] button that reads the password from the EditBox edtPassword and
determines whether the password is strong or weak. A strong password needs to meet all the following
criteria:

● The length of the password is a minimum of 6 characters.
● The password contains at least one digit.
● The password contains at least one letter.
● The password contains at least one of the following special characters: * , # , ? , $.

IT-Practical-LB-Gr11.indb 67 2019/10/02 10:14

68 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 3: Arrays continued

Otherwise, the password is considered to be weak.

2.2 Add the password, as well as the strength of the password, to the ListBoxes as shown below.

2.3 When the [Check All] button is pressed, use a FOR-loop to check the strength of all the passwords in
the array.

2.4 Record the strength of all passwords in a parallel array named arrStrength.

2.5 Display all the passwords, as well as the strength of the passwords, as shown above.

QUESTION 3

Open project BoxOf� ce_p in the 03 – Question 3 – Box Of� ce Folder that provides the following interface:

Two parallel arrays have been declared and initialised:

● arrMovies – an array of type String containing the names of
movies.

● arrTickets – a parallel array of type Integer containing the
number of tickets sold for each movie in arrMovies.

The variable iItems tracks the number of items in the Array.

3.1 When the [Hit or Miss] button is pressed: Determine and
display which movie has sold the greatest number of
tickets. At the same time, determine and display which
movie has sold the least number of tickets.

3.2 When the [Average] button is pressed: Determine and
display the average ticket sales across all the movies
being shown.

3.3 A businessman has sponsored 100 tickets per movie to a local school. Write code for the [Block Adjust]
button, which will increase the ticket sales of all movies by 100.

3.4 Movies have a limited run on circuit. This means that eventually, it is removed from cinema listings and is
released to home video or streaming services. Write code for the [Remove] button which will prompt the
user to input the name of a movie. Locate the movie in the movies array and remove its entries from both
arrays.

IT-Practical-LB-Gr11.indb 68 2019/10/02 10:14

69TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION

TERM 2

CHAPTER

4
STRING AND DATE
MANIPULATION

CHAPTER UNITS

Unit 4.1 Built-in string methods

Unit 4.2 Delimited strings

Unit 4.3 Built-in Date-Time methods

 Learning outcomes

At the end of this chapter you should be able to
● describe the following concepts: method-call, method-overload and method signature
● use the following built-in string methods: Pos, Copy, Insert and Delete
● read delimited strings
● extract data from delimited strings
● store the data from delimited strings in an array
● use Date methods.

INTRODUCTION

In Grade 10, you learned how to manipulate strings by using FOR-loops to
access each character in the string. By doing this, you were able to:
● � nd a character in the string
● replace a character in a string
● delete a character from a string
● insert a character into a string.

In this chapter, you will learn about built-in string methods that allow you to do the
same thing without having to use a FOR-loop. You will also learn how to use
these methods to manipulate individual words and phrases from strings. We will
also focus on the use of Date methods.

IT-Practical-LB-Gr11.indb 69 2019/10/02 10:14

70 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

In Chapter 1, you worked with built-in mathematical methods. These built-in
methods are made accessible to programmers through modules that we call
units. In this section, you will learn more about string methods that allow you to
manipulate and work with strings. In Grade 10 you used the following methods
IntToStr(), StrToInt(), StrToFloat(), FloatToStr, Input Box() and Length().

LENGTH() FUNCTION
In Grade 10, you learnt that the length functions returns the number of characters
in a string. For example:

 iCount := length('It's hot today') // the value of
 // iCount will be
 // 14

CONCAT() FUNCTION
The CONCAT–function concatenates (joins) strings (String1, String2 ...) together
into one result string. It is equivalent to the + operator. Thus far you have been
using the + operator to join strings, for example, sSentence:=sSentence+sWord

Syntax: CONCAT(Sstring1, sString2, …)
● sString1: refers to the � rst string to be joined.
● sString2: refers to the second string to be joined.
● …: indicates more strings can be joined.

Here are some examples:

sMsg := 'it''s a good day';
sMsg := sMsg +' for fi shing'; //note the space at the
beginning of the string ' for fi shing’

OR

sMsg := Concat(sMsg,' for fi shing');
sCities := Concat('Paris','London','New York'); //will
join all the strings without spaces //between the strings

COPY() FUNCTION
The COPY–function returns a copy of a certain number of characters from a
string. The result is a string that is part of the original string, which we refer to as
a substring.

Syntax 1: COPY(sString, iStart, iNumCharacters)
● sString: the string you are copying from.
● iStart: the position to start copying from.
● iNumCharacters: the number of characters to copy.

Take note

If you hover your cursor
over a method in Delphi, it
will display the unit the
method belongs to.

New words

concatenates – to joins
strings together into one
result string

method overloading – to
have more than one
method with the same
name

method signature – is the
number of arguments and
their data type

Built-in string methods 4.1

UNIT

IT-Practical-LB-Gr11.indb 70 2019/10/02 10:14

71TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

A substring (part of a string) will be copied from string sString, starting at position iStart, iNumCharacters

number of characters will be returned.

Example:

sResult := Copy('PAM is cool',5,2) – will result in sResult := 'is'

Syntax 2: Copy(sString, iStart)
● sString: the string you are copying from.
● iStart: the position to start copying from to the end of the string.

Example:

sResult := (copy('PAM is cool',8) – will result in sResult := 'cool'

METHOD–OVERLOADING AND METHOD–SIGNATURE
We can see from the discussion above that we can call the COPY–function using different arguments:
● The � rst COPY–function’s method signature is its argument (sString, iStart, iNumCharacters).
● The second COPY–function’s method signature is the arguments (sString, iStart).

We can have more than one method with the same name. This is called method–overloading.

Delphi differentiates between the two COPY–functions using a method signature. The method signatures
refers to the number of arguments and their data types. Look at Table 4.1 below for some examples.

Table 4.1: Examples of method signatures

EXAMPLES OUTCOME

sWord := 'Hamburger';
sAbrev := Copy(sWord, 1, 1);

sAbrev := ’H’

sWord := 'Hamburger';
sAbrev := Copy(sWord, 1, 3);

sAbrev := 'Ham'

sWord := 'Hamburger';
sAbrev := Copy(sWord, 20, 1);

sAbrev := ''
'' denotes empty string

var
 sName : String;
 cInitial : char;

sName := 'James';
cInitial := Copy(sName, 1, 1);
//copy one character

Type mismatch error. The result of the Copy function is a string
and cannot be stored in a char variable

Note: To store a single character using a copy function we use:

cInitial := Copy(sName, 1, 1)[1] ;
then
cInitial := 'J'

sName := ' Nelson Mandela'
iLen := length(sName)
sLast3 := copy(sName,iLen -2)

sLast3 := 'ela'

IT-Practical-LB-Gr11.indb 71 2019/10/02 10:14

72 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 4.1

4.1.1 Study the declaration below and determine the output in the table provided:

Var sName, sSurname, sID : string;
 cLetter : char;
Begin
 sName := 'Nathaniel';
 sSurname := 'Khune'
 sID := '9607225212087'
End;

STATEMENT OUTPUT OF lblOUTPUT CAPTION

1 lblOutput.Caption := Copy(sName,5,1)

2 lblOutput.Caption := Copy(sName,1,0)

3 lblOutput.Caption := Copy(sName,20,2)

4 lblOutput.Caption := Copy(sName,6,4)

5 lblOutput.Caption := Copy(sName,1,1) + ‘ ‘ + Copy(sSurname,1,5)

6 lblOutput.Caption := Copy(sSurname,1,Length(sSurname))

7 lblOutput.Caption := ‘Day: ‘ + Copy(sID,5,2)

8 lblOutput.Caption := ‘Year: 19’ + Copy(sID,1,2)

9 lblOutput.Caption := IntToStr(length(Copy(sName,3,5)));

10 lblOutput.Caption := IntToStr(length(Copy(sName,1,8)));

POS() FUNCTION
The Pos function returns the start position of one string within another string as an integer. For example,
the start position of ‘mark’ in ‘� sh market’ is 6.

Syntax: Pos(sSubstring, sString);
● sSubstring: string to be found.
● sString: string in which to look for sSubstring.

Note:
● sSubstring can be a character or a string.
● Pos looks for an exact string and is case sensitive.
● Pos returns the start position of the substring sSubstring in the string sString.

Examples:
 iPos := Pos(‘at’,’Leave at 10’) will result in iPos := 7.
 iPos: = Pos(‘v’,’Leave at 10’) will result in iPos := 4.

● If there are many occurrences of the substring sSubstring in the string sString, then the start position
of the � rst occurrence of the substring is returned.

Example:

 iPos := Pos('a','Leave at 10') will result in iPos := 3

New words

Pos – to return to the start
position of one string within
another string as an integer

IT-Practical-LB-Gr11.indb 72 2019/10/02 10:14

73TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

● The start position of the � rst character of the substring sSubstring is returned.
● If the substring sSubstring is not found within sString then it returns a value 0

Example:

 iPos := Pos('@','Leave at 10') will result in iPos := 0;

Table 4.2: Other examples

STATEMENTS VALUE OF iPLACE

var s: String;
 iPlace : Integer;
…
s := ‘DELPHI PROGRAMMING’;
iPlace := Pos('HI', s);

5

sWord := 'School';
iPlace := Pos('o',sWord);

4

sWord := 'School';
iPlace := Pos('oo',sWord);

4

sWord := 'School';
iPlace := Pos('s',sWord);

0 - because Pos is case sensitive

Activity 4.2

4.2.1 Study the declaration below and determine the value of iAns. Complete the table below.

Var sName, sSub: string;
 cLetter : char;
Begin
 sName := 'Information Technology';
 sSub := 'Tech';
 cLetter := 'I';
End;

NO STATEMENT iANS

a.
iAns := Pos('n', sName);

b.
iAns := Pos(cLetter, sName);

c.
iAns := Pos(sSub, sName);

d.
iAns := Pos('man', sName);

e.
iAns:= Pos(sName, sSub);

IT-Practical-LB-Gr11.indb 73 2019/10/02 10:14

74 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

4.2.2 Study the Delphi code segment below and answer the questions that follow:

 Var sFullNames, sName, sSurname : string;
 iPos : Integer;
..........
 sFullNames := edtFullNames.Text;
 iPos := Pos(' ', sFullNames) //Position of space
……..

Assume that the string ‘Ariana Grande’ is read for the sFullNames variable using the edtFullNames EditBox:

a. Write a Delphi statement that will extract the � rst name from sFullNames and store the name in sName.
This code should work for any full name read.

b. Write a Delphi statement that will extract the surname from sFullName and store the surname in sSurname.
This code should work for any full name read.

SETLENGTH() PROCEDURE
The SETLENGTH procedure changes the size of a string.

Syntax: setLength(sString, iNewLength);
● sString: the string whose size will change.
● iNewLength: the new size of sString.

When changing the size of a string sString, the new size iNewLength may be smaller, the same size or
larger than the existing string length. In all cases, the size is in characters, and a new string is created
regardless.

Note:
● If the new size of the string is smaller than the original size of the string, the string gets truncated,

that means that if the string contains 15 characters and the new size is 10, then the last 5 characters
are ‘chopped’ off.

Example:

 sString := 'Change is the only constant';
 setLength(sString, 13);

After the statements above are executed, the value of sString will be:
‘Change is the’

● If the new size of the string is larger than the original length of the string, then space for extra
characters are added but these extra characters are not initialised. This can create odd effects.

Example:

 sString := 'Plenty';
 setLength(sString, 15)
 memDisplay.Lines.Add(sString);
 sStr := 'Plenty';
 setLength(sStr, 10);
 memDisplay.Lines.Add(sStr);

New words

SETLENGTH – to change
the size of a string

IT-Practical-LB-Gr11.indb 74 2019/10/02 10:14

75TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

After the statements above are executed, the results returned could be:

PlentyFormat
Plentyion

We � nd odd effects in the output. This is because the additional characters are not initialised.

Activity 4.3

4.3.1 Given code:

sText := 'Creative people will benefi t most from changes in technology';
setLength(sText, 15);
sMessage := 'Hacking is';
setLength(sMessage, 14);

What will be the values sText and sMessage after the statements are executed?

4.3.2 Given code:

Line 1: sText := 'abcdefg';
Line 2: setLength(sText, 15);

a. Write code to initialise the extra places created in line 2 with a ‘-‘ character.

b. Why is this initialisation of the extra space so important?

INSERT() PROCEDURE
The Insert procedure inserts one string into another string. Unlike functions, the INSERT procedure
changes the string, that is, after the procedure is called, the previous value of the string is
permanently changed.

Syntax: Insert(sSubstring, sString, Position)
● sSubstring: string to be inserted.
● sString: string in which sSubstring will be inserted.
● Position: integer position where sSubstring is to be inserted.

Note:
● Any characters to the right of the insertion position will be moved to the right.
● The length of the string will increase by the number of characters inserted.

Example:

Study the Delphi code segment below.

…
 sPhrase := ‘IT is my favorite subject’;
 Insert('really ', sPhrase, 7);
 Insert('really ', sPhrase, 6);
 Insert('really ',' IT is my favorite subject', 6);
 …

New words

Insert – to insert one string
into another string

IT-Practical-LB-Gr11.indb 75 2019/10/02 10:14

76 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

The outcome after each statement in the code segment is executed.

STATEMENTS OUTCOME

sPhrase := ‘IT is my favourite subject’; sPhrase := ‘IT is my favourite subject’;

Insert(‘really ‘, sPhrase, 7); sPhrase := ’IT is really my favourite subject’

Insert(‘really ‘, sPhrase, 6); sPhrase := ’IT is really my favourite subject’

Insert(‘really ‘,’ IT is my favourite subject’, 6); Gives an error. The second argument must be a variable so
that a value can be assigned to it

Activity 4.4

Study the code below and then complete the table.

Var sName, sSub: string;
 cLetter : char;
Begin
 sPhrase := 'Hard work pays off'; //18 characters
 sSub := 'Very';
 cLetter := 'f';
End;

STATEMENT OUTPUT

1
Insert(sSub,sPhrase,1);
lblOutput.Caption := sPhrase;

2
Insert(sSub + ' ',sPhrase,1);
lblOutput.Caption := sPhrase;

3
Insert(cLetter,sPhrase,Length(sPhrase));
lblOutput.Caption := sPhrase;

4
Insert('thorough ',sPhrase,Pos(' ' , sPhrase) + 1);
lblOutput.Caption := sPhrase;

5
Insert('Only ',sPhrase,Pos(',' , sPhrase) + 1);
lblOutput.Caption := sPhrase;

DELETE() PROCEDURE
The Delete procedure deletes a number of characters iNumOfCharacters

from a string sString starting from a start position iStartPosition.
Syntax: Delete(sString, iStartPosition, iNumofCharacters)
● sString: String from which characters will be deleted.
● iStartPosition: Integer position of � rst character to be deleted.
● iNumofCharacters: Number of characters to be deleted.

New words

Delete – to delete a
number of characters from
a string starting from a
start position

IT-Practical-LB-Gr11.indb 76 2019/10/02 10:14

77TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

Note:
● Any characters to the right of the deleted characters will be moved to the left.
● The length of the string will decrease by the number of characters deleted.

Example:

 …
 sPhrase := 'IT is not my most favourite subject'
 Delete(sPhrase, 7, 4);
 Delete(sPhrase, 10, 5);
 Delete(sPhrase, 1, 100);
 Delete(‘I love IT’, 1, 1);
 …

The outcome after the Delete statements are executed one after the other:

STATEMENT OUTCOME

Delete(sPhrase, 7, 4); sPhrase := ’IT is my most favourite subject’

Delete(sPhrase, 10, 5); sPhrase := ’IT is my favourite subject’

Delete(sPhrase, 1,100); sPhrase := ’’ //empty string

Delete(‘I love IT’, 1, 1); Gives an error. First argument must be a string variable to be assigned a value, not
a constant string

Activity 4.5

Given: sValue:=’Johannesburg’

Write down independent Delphi statements to do the following:

4.5.1 Determine the length of sValue.

4.5.2 Remove the string ‘hannes’ from sValue.

4.5.3 Find the position of ‘ann’ in sValue.

4.5.4 Return characters 3 to 5 from sValue.

4.5.5 Insert the string ‘hannes’ after the letters ‘Jo’ in sValue.

Guided activity 4.1 String functions

Open the StringProblems_p project in the 04 – String Problems Folder. You should see the following user interface
when you run the project.

Take note

If the method has a return
value, store this value in a
variable.

IT-Practical-LB-Gr11.indb 77 2019/10/02 10:14

78 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 4.1 String functions continued

Create OnClick events for buttons: Question 1, Question 2, Question 3, Question 4 and Question 5 as follows:

● Question 1 button
Determines whether the input text contains a comma or not. Displays an appropriate message in the MemoBox
indicating whether the comma was found or not. If the comma was found, display the position of the comma in the
input string.

sInput := edtInput.Text;
iPos := Pos(',', sInput);
if iPos > 0 then
 memOutput.Text := 'Comma found at position ' + IntToStr(iPos)
else
 memOutput.Text := 'Comma not found';

Notes:
 The POS function is used to determine the position of the comma in the input string.

 If the value returned by the POS function in iPos is equal to 0, then a comma is not found in the input string;
otherwise the comma is found in position iPos.

● Question 2 button
Deletes any characters in the input text up to (and including) the � rst space. If there is no space in the text, no
characters are deleted. Display the changed input text in the MemoBox.

sInput := edtInput.Text;
iPos := Pos(' ', sInput);
Delete(sInput, 1, iPos);
memOutput.Text := sInput;

Notes:
 Pos function is used to determine the position of the � rst space.

 All characters can then be deleted from the start of the text to the position of the space.

 If no space is found, Pos will return a value of 0 and no characters will be deleted.

● Question 3 button
Move the � rst three characters of the input text to the end of the input text. Display the changed input text in the
MemoBox.

sInput := edtInput.Text;
sCharacters := Copy(sInput, 1, 3);
Delete(sInput, 1, 3);
sInput := sInput + sCharacters;
memOutput.Text := sInput;

Notes:
 The � rst three characters are copied to a new string sCharacters before being deleted from the input

string sInput.

 After the � rst three characters are deleted from sInput, they can be added to the end of sInput.
 sInput is displayed in the memo component.

● Question 4 button
Deletes all copies of the lowercase character ‘s’ from the input text. Display the changed input string in the
Memo box.

IT-Practical-LB-Gr11.indb 78 2019/10/02 10:14

79TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

Guided activity 4.1 String functions continued

sInput := edtInput.Text;
iPos := Pos('s', sInput);
while iPos <> 0 do
begin
 Delete(sInput, iPos, 1);
 iPos := Pos('s', sInput);
end;
memOutput.Text := sInput;

Notes:
● The position of the � rst ‘s’ is determined using the POS function and stored in iPos.
● While iPos <> 0, delete the ‘s’ from sInput and � nd the next ‘s’ in sInput . Continue this process while iPos <> 0.
● By using a WHILE-DO-loop, you can continue searching through your input text sInput and deleting all ‘s’

characters until no ‘s’ characters are found.

● Question 5 button
Inserts a space after every character of the text. Display the changed input string in the MemoBox.

sInput := edtInput.Text;
i := 1;
while i <= Length(sInput) do
begin
 i := i + 1;
 Insert(' ', sInput, i);
 i := i + 1;
end;
memOutput.Text := sInput;

Notes:
● You can use a WHILE-loop with the Insert command to add a space after each character.
● With this code, you need to make sure that your loop does not add a space after the space it previously added.

This will cause your program to go into an in� nite loop where each iteration of the loop simply adds another
space after your previously added spaces.

● Therefore, in the code above, the value of ‘I’ is incremented twice. The � rst time it increases it selects the next
character, while the second increase moves ‘I’ past the newly added space.

● Save and run your project.

Activity 4.6

4.6.1 To make messages more interesting, the word ‘� apping’ must be added between the � rst two words of a
message. Open the FlappingWord_p project in 04 – Flapping Word Folder and do the following:

IT-Practical-LB-Gr11.indb 79 2019/10/02 10:14

80 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 4.6 continued

● Create an OnClick event for the [Send Flapping Message] button to read a message from the EditBox
● Add the word ‘� apping’ in between the � rst two words of a message.
● Display the message in the MemoBox.
● Save and run the project.

4.6.2 Coming up with interesting, new compliments in a relationship can be challenging, especially after you have
been in a relationship for a long time. To solve this problem, you have decided to create the Love Letters
application that will randomly generate new compliments whenever you click on a button.
Open the LoveLetters_p project in the 04 – Love Letters Folder.

When you click on the [Generate compliment] button, the application should do the following:

● Store several greetings, pet names and descriptions in three arrays. These arrays have already been created
for you.

● Create a random compliment in the following format: <GREETING>, <PETNAME> you look
<DESCRIPTION> today!
<GREETING>, <PETNAME> and <DESCRIPTION> are randomly selected from their respective arrays.

● Using the string functions, replace the <GREETING>, <PETNAME> and <DESCRIPTION> keywords in your
compliment with the randomly selected phrases from the arrays.
Display your automatically generated compliment.
The message below shows an example of a simple compliment that could be used in your application.
<GREETING> <PETNAME>, you look <DESCRIPTION> today!

● By replacing the keywords, you might end up with one of the following compliments:
 Hi Love, you look stunning today!

 Hey Gorgeous, you look amazing today!

IT-Practical-LB-Gr11.indb 80 2019/10/02 10:14

81TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

Activity 4.6 continued

4.6.3 Open the Cryptographer_p project in the 04 – Cryptographer Folder and add code to the OnClick event for the
[Encrypt] button to do the following:

An encrypted message was created in the following manner:

● a character’s logical numerical position was obtained from the character list below:
 sCharacterList := ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789.,!?:-+=”()[]’;
Example: The logical numerical position of ‘A’ is 1, ‘B’ is 2 and so on.

● The character’s numerical position (obtained in bullet 1) was incremented by 5.
● If the radio button Caesar Cipher is selected then decrypt and display the message.
● Save and run your project.

IT-Practical-LB-Gr11.indb 81 2019/10/02 10:14

82 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CHARACTERS AND ASCII CODES
In Grade 10 you learned about ASCII codes. Remember that a character is any letter, number, space,
punctuation mark or symbol. Each character is represented by an ASCII code. ASCII code stands for
American Standard Code for Information Interchange. ASCII coding is a standard way to represent
characters using numeric codes. See the characters and their corresponding ASCII code on the ASCII
table in Annexure A.

Here are some examples:
● The ASCII code for ‘A’ is 65
● The ASCII code for ‘a’ is 97
● The ASCII code for ‘?’ is 63

ORD() FUNCTION
The ORD function returns the ordinal value (ASCII) of a character.

Syntax: Ord(cChar)
● cChar: represents a character.

Examples:

 iNum := ord('B'); // will return the ordinal value 66
 iNum := ord('z'); // will return the ordinal value 122

CHR() FUNCTION
The CHR function returns the corresponding character of an ASCII code.

Syntax: Chr(iNum)
● iNum: represents an ordinal number of a character.

Examples:

cChar := chr(66); // will return the character 'A'
cChar := chr(122); // will return the character 'z'

VAL() P ROCEDURE
The VAL procedure converts a string to a numeric value.
Syntax: Val(sString, Result, iCode);
● sString: represents the string that must be converted.
● Result: represents the value that must be returned and can be either an integer or real number.
● iCode: Stores an integer value based on the success of the code conversion. If the conversion is

successful, iCode is 0. If the conversion is unsuccessful, iCode stores the position where an error
� rst occurred in the conversion.
Examples:

 Val('4450',result,iCode);

The string ‘4450’ will be converted to 4450 and stored in result. iCode will hold the value 0 because the
conversion was successful.

 Val('44A0',result,icode);

The string ‘44A0’, will not covert successfully to an integer value because of the non-numeric character
‘A’. Result store the value 44 and iCode will store the value 3.

New words

ORD – to return the ordinal
value of a character

CHR – to return the
corresponding character of
an ASCII code

VAL – to convert a string to
a numeric value

IT-Practical-LB-Gr11.indb 82 2019/10/02 10:14

83TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

STR() PROCEDURE
The STR procedure converts an integer or real number into a string, with optional basic formatting.

Syntax: Str(Number, sString);
● Number: represents an integer or real number to be converted.
● sString: holds the converted Number as a string.

Examples:

 iNum := 123;
 rNum := 345.24;
 Str(iNum, sConvert1);
 ShowMessage (sConvert1);
 Str(rNum, sConvert2);
 ShowMessage(sConvert2);

When the code above is executed then the following is displayed:
123
3.45240000000000E+0002 ← Real numbers are displayed in � oating-point format.

UPCASE() FUNCTION
The Upcase function converts a single letter (‘a’..’z’) character to uppercase. If the letter is already in
uppercase, it is left unchanged.

Syntax: Upcase(cLetter);
● cLetter: represents a small letter in the range ‘a’ to ‘z’.

Examples:

 cChar := 'z';
 cLetter := Upcase('t') // cLetter will store the letter 'T'
 cCh := Upcase(cChar); // cCh will store the letter 'Z'
 cLetter2 := UpCase('S'); // cLetter2 will store letter 'S'

UPPERCASE() FUNCTION
The UpperCase function converts lowercase characters in a string to uppercase.

Syntax: Uppercase(sString)
● sString: represents the string that must be converted to uppercase.

Example:

 sMessage := uppercase('Horse'); //sMessage will store 'HORSE'

LOWERCASE() FUNCTION
The LowerCase function converts uppercase characters in a string to lowercase.

Syntax: Lowercase(sString)
● sString: represents the string that must be converted to lowercase.

Example:

 sMessage := lowercase('Save The World'); //sMessage will store
 //'save the world'

New words

STR – to convert an integer or real
number into a string, with optional
basic formatting

Upcase – to convert a single letter
character to uppercase

UpperCase – to converts lowercase
characters in a string to uppercase

LowerCase – to converts uppercase
characters in a string to lowercase

IT-Practical-LB-Gr11.indb 83 2019/10/02 10:14

84 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

COMPARETEXT FUNCTION
The CompareText Function compares two strings, sString1 and
sString2 for equality, ignoring case. It is not case sensitive. It returns an
integer value.

Syntax: CompareText(sString1, sString2)
Note:
● The function returns 0 if the strings are equal.
● If sString1 is greater than sString2, the function returns an integer greater than 0.
● If sString1 is less than sString2, the function returns an integer less than 0.

Example 1:

 iNum := CompareText('Heidi','heidi')

iNum will store the value 0 because when the case is ignored, the strings are equal.

Example 2:

 sName1 := 'John';
 sName2 := 'Janet';
 iNum := CompareText(sName1, sName2);

iNum will store a value greater than 0 because sName1 is greater than sName2.

Example 3:

 sName1 := 'John';
 sName2 := 'Janet';
 iNum := CompareText(sName2, sName1);

iNum will store a value less than 0 because sName2 is less than sName1.

Activity 4.7

4.7.1 Write Delphi statements to display the ordinal value (ASCII) of the following characters.

a. ‘╝’

b. ‘G’

c. ‘9’

4.7.2 Read a sName string from ComboBox cmbNames and convert it to uppercase.

4.7.3 Study the code segment below and then answer the questions that follow:

 IF (compareText(sString1,sString2) = 0) THEN
 memDisplay.Lines.Add(‘Found’)
 ELSE
 IF (compareText(sString1,sString2) > 0) THEN
 memDisplay.Lines.Add('Descending')
 ELSE
 memDisplay.Lines.Add('ascending');

What will be the output if the following strings are read for sString1 and sString2 respectively?

a. ‘happy’ and ‘Unhappy’

b. ‘School’ and ‘school’

c. ‘Plain’ and ‘Plane’

New words

CompareText – to
compare two strings for
equality, ignoring case

IT-Practical-LB-Gr11.indb 84 2019/10/02 10:14

85TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.1 Built-in string methods

Activity 4.7 continued

4.7.4 Open the project PasswordEncrypter_U in the 04 – Passwoerd Encrypter Folder and write code for the
[Encrypt] button.

● Change the letters of the alphabet from the password to the next alphabetical letter, for example if the letter
is ‘A’, the letter must become ‘B’. If the letter is ‘B’, the letter must become ‘C’, and so on. If the letter is ‘Z’,
the letter must become ‘A’.

● Display the encrypted password in the password EditBox.
● Sample output:

IT-Practical-LB-Gr11.indb 85 2019/10/02 10:14

86 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

In everyday life, speci� c characters in written text are used to show where one piece of data ends and the
next piece of data begins. In books:
● spaces indicate where one word ends, and another word starts.
● full stops indicate where one sentence ends, and another sentence starts.
● line breaks indicate where one paragraph ends, and another paragraph starts.

These characters are called delimiters since they show the start and end (or limits) of individual pieces
of data.

In programming, the most common delimiter is the comma symbol (,),
which delimits the data stored in comma-separated value (CSV) � les.
In CSV � les, each line of text represents one row of data, while each
comma indicates where a column of data starts and ends. An example
of data stored in a CSV � le is shown in the images below.

Figure 4.1: Comma-separated values

The � rst image shows the CSV � le opened in a text editor, while the second image shows the same CSV
� le opened in a spreadsheet application. The spreadsheet application uses the row and column delimiters
to split the data into rows and columns, where each point of data (such as a phone number) can be
accessed on its own.

By using the different string functions, it is possible to take a delimited string and interact with the data
points inside the string. To see how this is done, work through the following examples and guided activities.

Guided activity 4.2 Delimited string splitter (algorithm)

Data is stored in the following format: ‘August#37#18’. The information in the string is delimited by the # symbol. So
‘August#37#18’ contains three pieces of information: month, temperature and rainfall. To split the pieces of information:

● Extract the string from the EditBox edtEnter and stored in a variable called sLine.

 sLine := edtEnter.text;

● Identify the position of the � rst delimiter.

 iPos := Pos('#',sLine);

● Copy the substring starting from position 1 to iPos -1.

 sMonth := copy(sLine,1,iPos-1);

● Delete the substring sMonth from sLine.

 Delete(sLine,1,iPos);

New words

delimiters – to show the
start and ends of individual
pieces of data

Delimited strings4.2

UNIT

IT-Practical-LB-Gr11.indb 86 2019/10/02 10:14

87TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.2 Delimited strings

Guided activity 4.2 Delimited string splitter (algorithm) continued

● Identify the position of the second delimiter.

 iPos := Pos('#',sLine);

● Copy the substring starting from position 1 to iPos -1.

 iTemp := StrToInt(copy(sLine,1,iPos-1));

● Delete the extracted substring from sLine

 Delete(sLine,1,iPos);

● The information that now remains in sLine is the rainfall data:

 iRainfall := StrToInt(sLine);

Open the DelimiterTut_p project in the 04 – Delimiter Strings Folder and complete the coding for the [Process] button
to extract and split the string from the EditBox as shown below.

In the GUI example above, we knew that the string had exactly two delimiters. What happens when a string does not
have a � xed number of delimiters? For example: Different sentences have different number of words which are delimited
by the spaces.

The code to obtain each individual word in a sentence is as follows:

sSentence := InputBox('Sentence', 'Enter String', 'The
quick brown fox jumps over the lazy dog');

 iPos := pos(' ', sSentence);

 while iPos <> 0 do
 begin
 sWord := Copy(sSentence, 1, iPos - 1);
 redOut.Lines.Add(sWord);
 Delete(sSentence, 1, iPos);

 iPos := Pos(' ', sSentence);

 if iPos = 0 then
 begin
 redOut.Lines.Add(sSentence);
 end;

 end;

Loops until no delimiters
(space) found in sSentence

Looks for the next delimiter in
sSentence.

If no delimiter is found, the
remaining string is displayed.

IT-Practical-LB-Gr11.indb 87 2019/10/02 10:14

88 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 4.2 Delimited string splitter (algorithm) continued

The program above can be adjusted to store the words of the sentence in an array instead of displaying them.
The adjusted code is:

…
Var
 arrWords : Array[1..20] of String;
…
sSentence := InputBox('Sentence', 'Enter String', 'The
quick brown fox jumps over the lazy dog');

 iCount := 0;

 iPos := pos(' ', sSentence);
 while iPos <> 0 do
 begin
 sWord := Copy(sSentence, 1, iPos - 1);
 inc(iCount);
 arrWords[iCount] := sWord;
 Delete(sSentence, 1, iPos);

 iPos := Pos(' ', sSentence);

 if iPos = 0 then
 begin
 inc(iCount);
 arrWords[iCount] := sWord;
 end;

 end;

Activity 4.8 English to Pig Latin

Pig Latin is a language game that children play in order to hide what they are saying from people not familiar with Pig Latin.
To convert a word to Pig Latin, you place the � rst character of the word at the end of the word and add the letters “ay”. This
means that the word ‘Delphi’ would become ‘Elphiday’, and the phrase ‘Hello world’ would become ‘Ellohay orldway’. For
this project, you need to create a program that can convert from English to Pig Latin, and from Pig Latin to English.

To convert text from English to Pig Latin (and back), you will need to start by identifying all the spaces in the text.

● Open the project saved in the Pig Latin_p project in the 04 – Pig Latin Folder. You should see the following user
interface.

iCount keeps count of the
index position of the array
and is initialised to 0.

The extracted word (sWord)
is stored in the array at
position iCount.

Looks for the next delimiter
in sSentence.

If no delimiter is found, the
remaining string in the next
counter position in the array

IT-Practical-LB-Gr11.indb 88 2019/10/02 10:14

89TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.2 Delimited strings

Activity 4.8 English to Pig Latin continued

● Write code for the [English to Pig Latin] button to extract data from MemoBox memEnglish and then convert the
input text into Pig Latin. The converted text should be displayed in the Pig Latin MemoBox memPL.

● Write code for the [Pig Latin to English] button that will extract data from MemoBox memPL and then convert the
extracted text to English from Pig Latin. The converted text should be displayed in the MemoBox memEnglish.

IT-Practical-LB-Gr11.indb 89 2019/10/02 10:14

90 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

The Delphi programming language includes methods and components which are speci� cally designed to
manipulate date and time information.

THE TDATETIME DATA TYPE
The data type TDateTime is capable of storing date and time data in a single variable.

var
 dtToday : TDateTime;

A variable of type TDateTime can receive its value through initialisation, from a DateTimePicker component
or by assigning it to the system date and time.

THE DATETIMEPICKER COMPONENT
Delphi includes a DateTimePicker component that enables the user to select a date from a calendar-style
interface.

The component’s Kind property determines whether it will be used to select a Date or Time.

DATE FUNCTION
The Date function returns the current date in the local time zone. Because the return value is a TDateTime

type, the time component is set to zero (start of day).

Syntax function date: TDateTime;

Example:

 Var dtToday:TDateTime;
 …
 dtToday := Date;

The Prefi x dt will be used for
a variable of TDateTime

Built-in Date-Time methods4.3

UNIT

IT-Practical-LB-Gr11.indb 90 2019/10/02 10:14

91TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.3 Built-in Date-Time methods

TIME FUNCTION
The Time function returns the current time in the local time zone. Because the return value is TDateTime

type, the date component is set to 30/12/1899.

Syntax: function Time: TDateTime

Example:

 Var dtToday : TDateTime;
 …
 dtToday := time;

NOW FUNCTION
The Now function returns both the system date and time to a variable of type TDateTime.

var
 dtToday : TDateTime;

begin
 dtToday := Now; //Gets current system date and
 //time
end;

ASSIGNING VALUES TO THE TDATETIME VARIABLE
From a DateTimePicker component:

dtToday := dtpRegistered.Date;

By Assignment:

dtToday := StrToDate('2019/06/22');

From the System Date:

dtToday := Date;

CONVERTING DATA IN A TDATETIME VARIABLE INTO A STRING AND VICE VERSA
Data in a TDateTime variable will need to be converted to string for the following reasons:
● Most components (such as ShowMessage dialogs, RichEditBoxes and Labels) used commonly for

output, receive and display their output as a String.
● If the Date/Time data requires processing using String Handling methods (such as Copy or Pos), it is

necessary to convert the TDateTime data into a String and vice versa.

IT-Practical-LB-Gr11.indb 91 2019/10/02 10:14

92 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

The table below lists the most commonly used conversion functions between the two data types.

Table 4.3: The most commonly used conversion functions

FUNCTION WHAT IT DOES EXAMPLE

DateToStr Converts date information
stored in a variable of type
TDateTime into a variable of
type String.

dtToday := Date;
sToday := DateToStr(dtToday);
ShowMessage(sToday);
//Will output current date in the default
//system date format

StrToDate Converts date information
stored in a variable of type
String into a variable of type
TDateTime.

sToday := '2019/06/14';
dtToday := StrToDate(dtToday);
//The date formatting must match the system
//formatting.

TimeToStr Converts time information
stored in a variable of type
TDateTime into a variable of
type String.

dtToday := Time;
sToday := TimeToStr(dtToday);
ShowMessage(sToday);
//Will output current time in the default
//system time format.

StrToTime Converts time information
stored in a variable of type
String into a variable of type
TDateTime.

sTime := ’11:15:50’;
dtTime := StrToTime(sTime);
//The time formatting must match the system
//formatting.

DateTimeToStr Converts TDateTime values
into a formatted date and
time string

dtDate := StrToDate('18/07/2018 11:15');

ShowMessage('Date & Time: ' +
DateTimeToStr(dtDate));

//Will display 18/07/2018 11:15

FORMATDATETIME FUNCTION
The FormatDateTime function converts data of type TDateTime into data of type String. The returned
String can be formatted to return the Date/Time data in a user-de� ned format.

DATE FORMATTING TIME FORMATTING

yy 2 digit year hh 2 digit hour

yyyy 4 digit year nn 2 digit minute

mm 2 digit month ss 2 digit second

mmm Short month name (example Jan)

mmmm Long month name (example January)

dd 2 digit day

ddd Short day name (example Sun)

dddd Long day name (example Sunday)

IT-Practical-LB-Gr11.indb 92 2019/10/02 10:14

93TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.3 Built-in Date-Time methods

Example:

Var
 dtToday : TDateTime;
 sToday : String;
…
 dtToday := Now;
 sToday := FormatDateTime('dddd dd mmmm yyyy @ hh:nn:ss', dtToday);
 showMessage(sToday);

Assuming the user runs the program on 16 June 2020 at 10:16:43, the output value will display as:
 Tuesday 16 June 2020 @ 10:16:43
Notes:
● The TDateTime data type is capable of storing date and time information in a single variable.
● If we don’t provide a value for the Date, the variable will revert to the earliest system date.
● If we don’t provide a value for the time, the variable will revert to midnight.

Example 1:

Var
 dtToday : TDateTime;
 sToday : String;
…
 dtToday := Time;
 sToday := FormatDateTime('dd mmmm yyyy hh:nn:ss',dtToday);
 showMessage(sToday);
…

In this case, since the variable dtToday was assigned only to Time, the date value reverted to the earliest
system date (30 December 1899). The default date depends on the hardware the program is running on.

Example 2:

Var
 dtToday : TDateTime;
 sToday : String;
…
 dtToday := StrToDate('16/06/2017');
 sToday := FormatDateTime('dd mmmm yyyy hh:nn:ss',dtToday);
 showMessage(sToday);
…

IT-Practical-LB-Gr11.indb 93 2019/10/02 10:14

94 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

In this case, since the variable dtToday was assigned only to a speci� c date, the time value reverted to the
earliest system time which is midnight.

It is important to remember that a TDateTime variable has 2 parts (Date and Time) and both parts need to
be initialised / set before processing starts.

ASSIGNING THE DATE AND TIME IN A SINGLE STATEMENT
The following assignment statements will set both the date and time values in the TDateTime variable
dtToday.

System Date and Time:
dtToday := Now;

OR

dtToday := Date + Time;

From DateTimePicker components:

dtToday := dtpRegDate.Date + dtpRegTime.Time;

Using Speci� c Values:

dtToday := StrToDate('2019/06/16') + StrToTime('10:46:00');

ISLEAPYEAR FUNCTION
The IsLeapYear function returns true if a given calendar value is a leap year. Year can have a value
0…9999.

Syntax: Function isLeapYear(const year: word):Boolean;
Example:

…

iYear := StrtoInt(InputBox('Year','Enter a Year',''));
if isLeapYear(iYear) then
 ShowMessage(IntToStr(iYear) +' is a leap year')
else
 ShowMessage(IntToStr(iYear)) +' is not a leap year');

THE TIMER COMPONENT
The Timer is an invisible component that executes code written in its OnTimer event at � xed intervals.

The timer can be switched on and off by toggling its Enabled property.

If the Timer is enabled, the code in the OnTimer event will execute automatically at intervals determined
by the Interval property. This property is speci� ed in milliseconds and defaults to 1000 milliseconds or 1
execution per second.

IT-Practical-LB-Gr11.indb 94 2019/10/02 10:14

95TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.3 Built-in Date-Time methods

Guided activity 4.3

1. Open project Clock_p in the 04 – Clock Folder. The following interface is provided:

2. Create an OnTimer event for the tmrClock component.

3. Declare two variables: dtToday of type TDateTime and sToday of type String.

4. Extract the system date and time and assign it to dtToday.

5. Call the FormatDateTime function, assigning it to sToday. Display the Long Day name, the date, the long month
name, a four-digit year. Follow this with the “@” symbol and include the time with hours, minutes and seconds.

6. Display sToday in the label lblOut.

7. Save and run the project.

Var
 dtToday : TDateTime;
 sToday : String;
…
 dtToday := Now;
 sToday := FormatDateTime('dddd dd mmmm yyyy @ hh:nn:ss', dtToday);
 lblOut.Caption := sToday;
…

IT-Practical-LB-Gr11.indb 95 2019/10/02 10:14

96 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 4.9

4.9.1 State the value of sOutput in each of the following:

dtToday is a variable of type TDateTime and sOutput is a variable of type String.

a. dtToday := Date;
sOutput := TimeToStr(dtToday);

b. dtToday := StrToDate(’2003/03/13’) + StrToTime(’15:00:00’);
sOutput := FormatDateTime(‘dd mmm yy’, dtToday);

4.9.2 The following data structures have been provided:

Var
 dtToday : TDateTime;
 sToday : String;
 arrDetails : Array[1..7] of String;
…
 dtToday := Now;
 sToday := FormatDateTime('dddd dd mmmm yyyy hh:nn:ss', dtToday);

Write code to separate the delimited data in sToday and store each part in Array arrDetails.

Activity 4.10

Open BirthdayProcessor_p project in the 04 – Birtday
Processor Folder. The following interface is provided:

● Declare two variables of type TDateTime: One to
store the current date and the other to store the
user’s Date of Birth.

● Extract date of birth from the DateTime picker.
● Get the system date.
● Use the extracted data to determine and display:

 The user’s age

 The number of days to the user’s birthday. If the
user’s birthday has already passed for the
current year, then display a suitable message.

 The day (example: Sunday) when the user was born.

 Whether the person was born on a leap year or not.

IT-Practical-LB-Gr11.indb 96 2019/10/02 10:14

97TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.3 Built-in Date-Time methods

CONSOLIDATION ACTIVITY Chapter 4: String and date manipulation

QUESTION 1

Open the Wildlife_p project in the 04 – Wildlife Folder. The ListBox lstEnclosures stores information about the
details of each enclosure in the Wildlife Park in the following format: <Type of animal>;<Number of animals
currently in the enclosure>#<Size of the enclosure in square metres>;<Category of animals based on size>#

Example of the data for the � rst � ve enclosures in the ListBox lstEnclosures:

● Cheetah;3#80.2;L#
● Ratel;7#50;S#
● Serval;5#80.75;M#
● Caracal;4#200;L#
● Black-footed Cat;4#30;S#

1.1 Write code for the [Process] button to do the following:

a. Read each line of text from the ListBox lstEnclosures and display the text in the format shown in the
sample run below.

b. Display the total number of animals found at the Wildlife Park.

c. Determine and display the number of animals in each category ‘L’, ‘M’ and ‘S’.

IT-Practical-LB-Gr11.indb 97 2019/10/02 10:14

98 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 4: String and date manipulation continued

QUESTION 2

2.1 Open the project PhoneNumbers_p project in the Phone Numbers Folder.

The given program generates an array of phone numbers for you to work with. The array called arrPhoneNos
holds 20 strings. Data in the array will look like this:

arrPhoneNos [1] := ‘086 New Hill’;

arrPhoneNos [2] := ‘086 Dial Bar’;

arrPhoneNos [3] := ‘086 Bay View’;

arrPhoneNos [4] := ‘086 Kya Sand’;

arrPhoneNos [5] := ‘086 SowetoN’;

arrPhoneNos [6] := ‘086 Casa Sol’;

arrPhoneNos [7] := ‘086 The Havn’;

arrPhoneNos [8] := ‘086 Get Food’;

arrPhoneNos [9] := ‘086 Thai Plc’;

arrPhoneNos [10] := ‘086 Cleaner’;

arrPhoneNos [11] := ‘086 Casa Rok’;

arrPhoneNos [12] := ‘086 Rix Taxi’;

arrPhoneNos [13] := ‘086 Air Time’;

arrPhoneNos [14] := ‘086 Dial Bed’;

arrPhoneNos [15] := ‘086 Dial Car’;

arrPhoneNos [16] := ‘086 Dial Hlp’;

arrPhoneNos [17] := ‘086 Kya Rosa’;

arrPhoneNos [18] := ‘086 Bay Sand’;

arrPhoneNos [19] := ‘086 Cater 4 U’;

arrPhoneNos [20] := ‘086 1to1 Air’;

a. Write code for the [Convert] button to convert all the alphanumeric characters in the arrPhoneNos array
into normal telephone numbers. Replace the alphabetic characters (upper case and lower case) in the
telephone numbers with the corresponding numbers given below:

A, B, C 2

D, E, F 3

G, H, I 4

J, K, L 5

M, N, O 6

P, Q, R, S 7

T, U, V 8

W, X, Y, Z 9

The numeric values in the telephone numbers remain as they are.

Note: The resulting numerical phone number must be formatted as follows: 3 digits, space, 3 digits,
space, 4 digits (for example 086 345 6546)

Store the normal telephone numbers in a new array arrNewPhoneNos.

IT-Practical-LB-Gr11.indb 98 2019/10/02 10:14

99TERM 2 I CHAPTER 4 STRING AND DATE MANIPULATION I UNIT 4.3 Built-in Date-Time methods

CONSOLIDATION ACTIVITY Chapter 4: String and date manipulation continued

b. Write code for the [Display] button to display the original alphanumeric number and the new numerical
version.

Example of output:

c. Write code for the [Duplicate] button: Use the numerical phone numbers to check that there are no
duplicates in the array. If duplicates are found, the program must display the duplicate numbers. If no
duplicates are found, a suitable message must be displayed. At the end of the list there must be a
summary stating how many duplicates were found (if any).

Example of the output:

IT-Practical-LB-Gr11.indb 99 2019/10/02 10:14

100 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 4: String and date manipulation continued

QUESTION 3

3.1 The town electricity account control department requires help in calculating arrears interest on outstanding
payments. Arrears interest is calculated daily and added to the outstanding amount owing. In terms of their
policy, arrears interest is calculated per day as follows:

DAYS ARREARS INTEREST % PER DAY

1 – 7 1%

8 – 14 3%

>14 5%

Open the ElectricityAcc_p project in the 04 – Electricity Account Folder and write code for the [Process]
button to do the following:

a. Read the balance due amount from the EditBox.

b. Select the date from the date picker component of the due date by when the balance due was payable.

c. Calculate the following:

● number of days payment is overdue as of the current date,
● total amount owing after arrears interest is added and
● total arrear interest charged.

d. Display the original balance due, the number of days that payment is overdue, the new balance due, the
total arrear interest charged.

Save and run the project.

IT-Practical-LB-Gr11.indb 100 2019/10/02 10:14

101TERM 3 I CHAPTER 5 TEXT FILES

TERM 3

CHAPTER

5TEXT FILES

CHAPTER OVERVIEW

Unit 5.1 Introduction to text � les

Unit 5.2 Reading from a text � le

Unit 5.3 Writing to a text � le

Unit 5.4 Creating reports

 Learning outcomes

At the end of this chapter you should be able to:
● create text � les
● use text � le functions and procedures
● read and display data from a text � le and write data to a text � le
● use string manipulation functions to read delimited text � les
● catch and handle errors
● create reports using data from a text � le.

INTRODUCTION

You learnt that a variable stores information temporarily in your computer’s
memory. When working with large volumes of data, it can be time-consuming to
enter the data from the keyboard each time the program is executed. We can use
information stored in text � les as input.

Text � les are stored on a storage medium. Text � les provide a simple, convenient
and permanent way of storing textual data and are commonly used for importing
and exporting data to and from programs. A text � le does not have any formatting
or structure and therefore you can transfer them between programs. You can
store information permanently in a text � le and read and manipulate this
information using a Delphi program. By the end of this chapter, you should be
able to use the different text � le functions and procedures to open a text � le, read
data from a text � le and write data to a text � le.

IT-Practical-LB-Gr11.indb 101 2019/10/02 10:14

102 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

5.1

WHAT IS A TEXT FILE?
A text � le contains text with no formatting, that is, no formatting features such as
bold, underline, tables, styles and so on. Since the text � le has no formatting, it
can be used by different programs.

CREATING A TEXT FILE
You can create a text � le by using any one of the methods below:
● A text editor like NotePad:

Open the NotePad program, type the text and save the � le. The � le will have
a .txt extension.

● The Delphi Code Editor:
In Delphi:
 Click on File, New, Other, Other � le, Text File, OK. Select *.txt as the � le

extension.
 Type the text and save the � le.

● Writing Delphi Code.

Note:
● The text � le must be saved in the same folder as the project � le.

Activity 5.1

5.1.1 Create a text � le called IndustrialRevolution.txt using NotePad. The text � le must
contain the following text:

5.1.2 Create a text � le called StudyTips.txt using the Delphi code editor. The text � le
must contain the following text:

DISPLAYING THE CONTENTS OF A TEXT FILE
You can display the contents of a text � le in a MemoBox component or a RichEdit
component.

Examples:

● memDisplay.Lines.LoadFromFile(‘Cities.txt’);
● redDisplay.Lines.LoadFromFile(‘SeasonVisits.txt’);

Take note

Text � les have a .txt
extension

File found on
storage medium

Introduction to text � les

 UNIT

IT-Practical-LB-Gr11.indb 102 2019/10/02 10:14

103TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.1 Introduction to text � les

Note:

If the text � le is not saved in the same folder as the project � le, then you need to
indicate the path for the text � le.
Example:

memDisplay.Lines.LoadFromFile(‘c:\DelphiProjects\Cities.txt’);

SAVING THE CONTENTS OF A MEMOBOX OR RICHEDIT COMPONENT
AS A TEXT FILE
The contents of a MemoBox or RichEdit component can be saved as a text � le.

Examples:

● memDisplay.Lines.SaveToFile(‘NewCities.txt’);
● redDisplay.Lines.SaveToFile(‘Tours.txt’);

Activity 5.2

Open the TextLoadSave_p project from the 05 – Text Load Save Folder and write code to
do the following:

5.2.1 [Load Text File] button: Display the contents of the text � le Sports.txt using the
MemoBox component. Make the MemoBox component scrollable vertically.

5.2.2 [Create Text File] button: Save the contents of the RichEdit component to a � le
Fruits.txt and display a message ‘Saved to � le’.

PHYSICAL FILE VERSUS LOGICAL FILE NAME
The physical � le name refers to the external � le name found on a storage device
and contains the actual data.

The � le name that you will use in your Delphi program must be declared as you
would any other variable in your program:

 Var
 <fi leVariableName>: Textfi le;

The � leVariableName refers to the logical � le name that you use in your Delphi
program and not the physical � le name on your storage device. The logical � le
name is a variable (in RAM) that points to the physical � le on your storage medium.

LAYOUT OF DATA IN A TEXT FILE
Each line of a text � le has an end of line <eoln> marker. The <eoln> marker is
added to the end of a line when the [Enter] button is pressed. An end of � le

<eof> marker is added to the end of a � le when the � le is saved.

Name of � le to
store the contents
of the MemoBox or
RichEdit component

New words

physical � le – to name an
external � le name found on
a storage device and
contains the actual data

logical � le – is a variable
(in RAM) that points to the
physical � le on your storage
medium

end of line <eoln> – to
indicate the end of the line
when the [Enter] button is
pressed

end of � le <eof> – to
indicate the end of a � le
when the � le is saved

IT-Practical-LB-Gr11.indb 103 2019/10/02 10:14

104 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

The <eoln> and <eof> markers refer to Boolean functions eof() and eoln() and return a value of either true
or false. Example:

Fourth Industrial Revolution <EOLN>
Everyone is talking about the fourth industrial revolution <EOLN>
It will change how we produce, how we consume, how we communicate and even
how we live <EOLN>
Get ready for change <EOLN>
<EOF>

TEXT FILE PROCEDURES

PROCEDURE DESCRIPTION SYNTAX

AssignFile Creates a link between the logical � le name and
the physical � le found on a storage medium.

This procedure does not check whether the � le
exists or not. You need to use programming code
to check whether a physical � le exists or not.

AssignFile(tName, 'fi le.txt');

Links the logical � le name tName to the
physical � le ‘File.txt’

Rewrite Create a new � le with write only access(writing)
and sets the � le pointer at the beginning of
the � le.

If the � le already exists, the contents of the � le
is lost.

A buffer is created in RAM when this procedure
is executed. The buffer is opened for writing and
the � le pointer is set to the beginning of the
buffer area in RAM.

Rewrite(tName);

Reset Opens an existing � le for read only access and
sets the � le pointer at the beginning of the � le so
that text can be read from the beginning of the
text � le.

If the � le does not exist, the program will crash.
Programming code must be used to determine
whether a � le exists or not.

Reset(tName);

Append Opens the � le for writing and sets the � le pointer
to the end of the � le so that text can be written
to the end of the text � le

Note that the � le that you want to append to
must exist for you to make use of the Append
procedure.

It only allows you to add data to the end of
the � le.

Append(tName);

Writeln Writes a line of text at the current position of the
� le pointer and adds an end-of-line marker after
the written text. The � le pointer moves to the
next line ready to write a new line.

Writeln(tName, sOutput);

Writes the contents of variable sOutput to the
current position of the � le pointer and
positions the � le pointer to the next line.

IT-Practical-LB-Gr11.indb 104 2019/10/02 10:14

105TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.1 Introduction to text � les

PROCEDURE DESCRIPTION SYNTAX

Write Write does not place an end-of-line marker after
writing text to a � le, so when you make use of
the write procedure all the text that you write to
the � le will be written on one line.

Write(tName, sOutput);

Readln Reads the selected line of text from the current
� le pointer position in the � le and moves the � le
pointer to the next line.

Readln(tName, sInput);

Reads the contents of a line at the current
position of the � le pointer and stores the
contents in variable sInput

Read Reads all the characters up to the end-of-line
marker, or until Eof(FileVariable) becomes true.
The Read procedure does not read the end-of-
line marker with the characters.

Read(tName, sInput);

CloseFile Closes the link between the text � le’s logical
name and the physical � le name. You cannot
read or write to the text � le once it is closed.

CloseFile(tName);

TEXT FILE FUNCTIONS

FUNCTION DESCRIPTION SYNTAX

Eof Returns a Boolean value that indicates
whether you have reached the end of
the � le or not. A return value of true
indicates that the end of the � le has
been reached.

bEndOfFile := Eof(tName);

Eoln Returns a Boolean value that indicates
whether you have reached the end of a
line or not. A return value of true
indicates that the end of line has
been reached.

bEndOfLine := eoln(tName);

FileExists Returns a Boolean value that indicates
whether a � le with the given path
exists or not.

bFileExists := FileExists('fi le.txt');

Activity 5.3

Complete the following activity using pen and paper.

5.3.1 Explain what the purpose of the AssignFile procedure is.

5.3.2 Explain the difference between the Rewrite, Reset and Append procedures.

5.3.3 What type of value is returned by the Eof function?

5.3.4 Explain the purpose of the CloseFile procedure.

IT-Practical-LB-Gr11.indb 105 2019/10/02 10:14

106 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

STEPS TO FOLLOW WHEN READING FROM A TEXT FILE
● Step 1: Declare the text � le variable name (logical � le name) that you will use

to refer to the � le in Delphi. This is not the name of the physical � le on your
storage device, but instead is the name of a variable that points to the � le on
the storage medium.
Example:

 Var tLearners: TextFile;

● Step 2: Link (or assign) a physical � le to this text � le variable. By doing this,
your computer knows which � le on your storage medium to access when
you read or write information.
Example:

 AssignFile(tLearners,'Learners.txt');

● Step 3: Indicate how you would like to use the � le. The three options
available are Rewrite, Reset and Append.
Examples:

 Reset(tLearners);
OR Rewrite(tLearners);
OR Append(tLearners);

● Step 4: Read the contents of the line at the position of the � le pointer and
store the contents in the variable sLine. Once the line has been read, the � le
pointer points to the next line.
Example:

 Readln(tlearners,sLine);

● Step 5: Close the � le. Whenever you are done with your � le, you need to
make sure that you close the link between the text � le variable in Delphi and
the physical � le, allowing other applications to read this � le.
Example:

 CloseFile(tLearners);

FILEEXISTS FUNCTION
Your program can crash if you try to read from or write to a � le that does not exist.
You can use the FileExists function to determine whether a � le exists or not.

Syntax: Function FileExists(FileName:string):Boolean;

Note:
● The FileExists function returns the value TRUE if the physical � le name

FileName exists
● The program searches for the � le name in the current directory

New words

FileExists – to determine
whether a � le exists or not

Reading from a text � le5.2

UNIT

IT-Practical-LB-Gr11.indb 106 2019/10/02 10:14

107TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.2 Reading from a text � le

Example 1:

 if FileExists('Learners.txt') then
 ShowMessage('File is found on storage medium')
 Else
 ShowMessage('File not found on storage medium');

Example 2:

 bFileFound := FileExists('Learners.txt');
 if bFileFound then
 ShowMessage('File is found on storage medium')
 Else
 ShowMessage('File not found on storage medium');

EXCEPTION HANDLING
Another way to prevent a program from crashing when a � le does not exist is to
use Exception Handling in Delphi.

An exception is generally an error condition or event that interrupts the � ow of
your program. In order to prevent an interruption in the � ow of the program, we
use the try…except statement:

try
 …
except
 …
end;

Note:
● The Try command tells Delphi to try and run code where errors may occur.

If no errors occur, the code runs like it normally would. The exception block
(except) is ignored, and control is passed to the statement following the
end keyword

● However, if an error occurs in the Try section, Delphi ‘catches’ the error and
the except code will take over.
The try…except statement can be used to check whether a � le exists or not:

 Try
 Reset(tLearners);
 Except
 ShowMessage('File does not exist');
 Exit;
 End;

READING ALL LINES FROM A TEXT FILE
The lines in a Text File can only be accessed sequentially. This means that the
values can only be read in the order in which they were written. To read all the
data from a text � le, the Readln and Eof methods can be combined with a
WHILE-DO-loop. The WHILE-DO-loop continues to read lines from the text � le,
one line at a time, and adds them to the ListBox, until the end-of-� le is reached.

New words

Exception Handling – a
way to prevent a program
from crashing when a � le
does not exist

exception – is generally an
error condition or event that
interrupts the � ow of your
program

IT-Practical-LB-Gr11.indb 107 2019/10/02 10:14

108 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

While loop to read all the data from the Text File
var
tName: TextFile;
 sLine: string;
begin
 AssignFile(tName,'fi lename.txt');

 if not FileExists('fi lename.txt') then
 begin
 ShowMessage('The fi le does not exist');
 Exit;
 end
 else
 begin
 Reset(tName);

 while not Eof(tName) do
 begin

 Readln(tName,sLine);
 lstLines.Items.Add(sLine);
 end; //While
 CloseFile(tName);

end;//event handler

Note:
● To read all the text from a text � le, a line at a time, you need to loop through the text � le reading a line

at a time and adding the line of text to a ListBox until the EOF marker is reached.
● If you need to read a speci� c line of code from a text � le, then you also have to loop through the text

� le until the speci� c line is found or until the EOF marker is reached.
Remember that a text � le is sequential in nature and you have to read data in the order in which it was
written to the text � le. You cannot jump directly to the line you want to read.

READING THE FIRST LINE OF TEXT AND STORING IT IN A VARIABLE

Reading the � rst line
AssignFile(tName, 'fi lename.txt');
if not FileExists('fi lename.txt') then
 begin
 showMessage('The fi le does not exist');
 Exit;
 end;
else
begin
 Reset(tName);
 ReadLn(tName, sOutput);
 CloseFile(tName);
End;

Declare a � le variable (tName)

Declare a String variable (sLine) which will store a line of
text from the Text File

Links the text � le variable tName and the physical � le
‘Filename.txt’ on the storage medium

Exits the current procedure

Opens an existing � le for reading and sets the � le pointer
to the beginning of the � le

Do this in the Try… Except OR Test if the � le exists.

Loop until the EOF marker has been reached.

Reads a line of text from the text � le tName into a String
variable (sLline)

Add the line of text sLine to the ListBox lstLines

Closes the link between the text � le variable and the
physical � le on storage

IT-Practical-LB-Gr11.indb 108 2019/10/02 10:14

109TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.2 Reading from a text � le

READING THE FIFTH LINE OF TEXT AND STORING IT IN A VARIABLE

Reading 5th line
AssignFile(tName, 'fi lename.txt');
if not FileExists('fi lename.txt') then
 begin
 ShowMessage('File does not exist');
 Exit;
 end;
Reset(tName);
for i := 1 to 5 do
 begin
 ReadLn(tName, sOutput);
 End;
CloseFile(tName);
ShowMessage(sOutput);

RICHEDIT COMPONENT
The RichEdit component works in the same basic way as a Memo component but offers additional
formatting options. We will use the RichEdit component to tabulate output. To do this, you will need to
change the following properties of your RichEdit component.

PROPERTY DESCRIPTION POSSIBLE VALUES

Font.Color Sets the color of the font. clBlack

clWhite

clBlue

clRed

clYellow

Paragraph.Numbering Sets the type of bullet points to add to
each line.

nsBullet

nsNone

Paragraph.Alignment Sets the alignment of your paragraphs
to left, right or center.

taLeftJustify

taRightJustify

taCenter

Paragraph.TabCount Sets the number of tab stops that you
want to use with your TRichEdit
component.

Any positive integer such as 1, 2
or 3

Paragraph.Tab[Index] Index indicates which tab stop you are
working with. It sets the end of the tab
stop as a number of pixels from the
left of the TRichEdit component.

Take note: the index starts at 0.

Any positive integer such as 100,
200 or 250

IT-Practical-LB-Gr11.indb 109 2019/10/02 10:15

110 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 5.1

Suppose we want to display information in the following format:

 …
// sets the number of tab stops to 2
 redDisplay.Paragraph.TabCount := 2;
// the fi rst tab stop at index position 0 is set to 100
 redDisplay.Paragraph.Tab[0] := 100;
// the fi rst tab stop at index position 1 is set to 200
 redDisplay.Paragraph.Tab[1] := 200; // the second tab stop

 redDisplay.Lines.Add('ClientNo' + #9 + 'Full Name' + #9 + 'Client Type');
 redDisplay.Lines.Add('===');
 for i := 1 to 6 do
 begin
 sClientNo := edtClientNo.text;
 sFullName := edtFullName;
 sType := edtType;
 redDisplay.Lines.Add(sClientNo + #9 + sFullName + #9 + sType);
 end;
…

Activity 5.4

5.4.1 The data for each client is stored on a separate line as follows in a text � le Clients.txt:

<Client No>
<Name and Surname>
<Client Type>
<Client No>
<Name and Surname>
<Client Type>

 …

a. Open the Clients_p project from the 05 – Clients
Folder and create an OnClick event for the [Display
Client] button to display the Client No, Full Name of the
client and the Client Type from the text � le as shown.

b. Save and run the program.

Move a tab position

IT-Practical-LB-Gr11.indb 110 2019/10/02 10:15

111TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.2 Reading from a text � le

Activity 5.4 continued

5.4.2 The data for each client is stored as follows in a text � le ClientsDelimited.txt in the 05 – Clients Delimited
Folder:

 <Client No>,<Name and Surname>,<Client Type>

Open the ClientsDelimited_p project from the 05 – Clients
Delimited Folder and create an OnClick event for the
[Display Client] button to:

a. Display the Client No, Full Name of the client and the
Client Type from the text � le. Ensure that you can scroll
through the information in the richEditBox.

b. Display the total number of Clients and the total number
of clients that are of client type ‘Prestige’

c. Save and run the program.

5.4.3 The details of users at an Internet Café is stored in a text � le
LoginDetails.txt in the following format:

 <name>,<age>,<email address>,<password>

Hint: You can view a list of valid emails and passwords by opening the LoginDetails.txt � le in Notepad.

Open the VerifyLogin_p project from the 05 – Verify Login Folder.

Create an OnClick event for the [Login] button to do the following:

a. Read the email address and password from the EditBoxes.

b. Compare the input email and password combination against the email and password combinations stored in
the text � le called LoginDetails.txt.

c. Show a message, using an output DialogBox, indicating whether a correct or incorrect combination of email
and password was entered.

d. Save and run the project.

Figure 5.1: Sample Data where credentials are
input correctly

Figure 5.2: Sample Data where credentials are
input incorrectly

IT-Practical-LB-Gr11.indb 111 2019/10/02 10:15

112 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Now that you know how to create a � le and assign it to a text � le variable, you are ready to start adding
data to it. You already know that a text � le can be created using a Text editor (Notepad or Word processing
program) or the Delphi Code Editor. We are now going to learn how to create a text � le using Delphi
programming code.

You need to consider the format in which text will be written to the text � le. The format used must facilitate
easy reading and interpretation at a later stage.

CREATING AND ADDING DATA TO A NEW FILE
You need to create a � le before writing information to the � le and determine the format that will be used to
write information to the text � le.

Guided activity 5.1

5.1.1 Open the StoringLogin_p.dproj project from the 05 – Storing Login Folder.

5.1.2 The OnClick event for the [Login] button demonstrates how information is written to the text � le. The user enters
an email address and password in the EditBoxes. The email address and password will be written to the new
text � le Login.txt in the following format:

 <email address>,<password>

procedure TForm1.btnLogInClick(Sender: TObject);

Var
 tFileName: TextFile;
 sUserName, sPassword, sLine: String;
begin
 AssignFile(tFileName, 'Login.txt');
 Rewrite(tFileName);
 sUserName := edtUserName.Text;
 sPassword := edtPassword.Text;
 sLine := sUserName + ',' + sPassword;
 Writeln(tFileName, sLine);
 closeFile(tFileName);
 showMessage('File has been created');
end;

Declare a text � le variable

Links the text � le variable
with the new external � le.

Physically creates the text � le on your
storage medium. If the � le already
exists, the contents of the � le are lost.

Writes a line to the text
� le at the current � le
pointer position

Writing to a text � le5.3

UNIT

Closes the text � le

IT-Practical-LB-Gr11.indb 112 2019/10/02 10:15

113TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.3 Writing to a text � le

ADDING DATA TO AN EXISTING FILE

Guided activity 5.2

Open the TeamTracker_p project from the 05 – Team Tracker Folder. The following interface will display when the
program is run.

● The aim of this application is to track the goals scored during a match between two teams.
● The user starts using the application by clicking the [Load Teams] button. This loads a list of participating teams into

the ListBoxes lstHome and lstAway from a text � le.
● The two teams currently playing are selected from the ListBoxes lstHome and lstAway.
● Every time a team scores a goal, a [Goal!] button for the away or home team is clicked depending on who schored

the goal. If the Home team scores a goal, btnHome button is clicked and their score is increased by 1. If the Away
team scores a goal, btnAway button is clicked and their score is increased by 1.

● The scores are actively updated in the lblScore label.
● After the match is complete, the [Save and Reset] button is clicked which adds the results of the match to a text � le

named results.txt and then resets the application by deselecting the teams in the two ListBoxes and setting both
teams’ scores back to 0.

● The [Add Teams] button allows the user to add a new team to the roster of participating teams. The team is added
to both ListBoxes as well as to the text � le containing the list of teams.

Write code to do the following:

● Declare three global variables as shown below:

TeamTracker global variables
tTeam : TextFile;
iHomeScore, iAwayScore : Integer

● In the OnClick event of the [Load Teams] button do the following;
 Declare a local variable called sTempTeam.

 Assign the tTeam variable to a � le called teams.txt using the AssignFile procedure.

 Test if the text � le teams.txt exists and open(reset) the � le for reading. If the � le does not exist output a suitable
message and terminate the program.

 Use a WHILE-DO-loop with the Readln method, to read each line of text from the text � le and store the result in
sTempTeam.

 As you read a line from the text � le, add sTempTeam to the Home and Away ListBoxes (lstHome, lstAway).

 Enable the btnHome and btnAway buttons.

IT-Practical-LB-Gr11.indb 113 2019/10/02 10:15

114 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 5.2 continued

● In the onClick event for the btnHome button and btnAway buttons increment the value of iHomeScore and
iAwayScore respectively.
 Update the lblScore label to show the new score (using the iHomeScore and iAwayScore variables).

● Save and test your application.
 Select a team from lstHome ListBox

 Select a team from lstAway ListBox.

 Click on btnHome and btnAway to increment the scores of the participating teams. You can decide how many
times to click the respective buttons, which will set the closing score of the match. In the screenshot below, the
user clicked the btnHome button three times and the btnAway button two times.

APPENDING DATA
You can add data to an existing � le. Data is normally added to the end of
the � le. You need to position the � le pointer to the end of the text � le before
writing to the � le. The � le pointer can be moved in one of two ways:
● Looping through the contents of the � le until the EOF marker is

reached
● Using the append procedure. The append procedure opens an

existing � le for writing, sets the � le pointer to the end of the � le and
allows you to add data to the � le.

Example 5.2 Team Tracker adding teams to an existing � le

The application will now enable users to add their own team names to the existing ‘teams.txt’ � le. Open your
TeamTracker_p project in the 05 – Team Tracker Folder and do the following:

● In the OnClick event of the [Add Teams] button write code to do the following:
 Create a local variable called sTeamName.

 Use an input box to ask the user to enter a team name and store the value in the sTeamName variable.

 Add the value of sTeamName to both the ListBoxes.

 Open the tTeams � le using the append procedure.

 Write the value of sTeamName to the tTeams � le using the WriteLn procedure.

 Close the tTeam � le.

New words

append – to open an
existing � le for writing, set
the � le pointer to the end of
the � le and allows you to
add data to the � le

IT-Practical-LB-Gr11.indb 114 2019/10/02 10:15

115TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.3 Writing to a text � le

Example 5.2 Team Tracker adding teams to an existing � le continued

The code for saving to an existing � le should now look as follows:

Writing to � le
procedure TfrmTeamTracker.btnAddClick(Sender: TObject);
var
 sTeamName : String;
begin
 sTeamName := InputBox('New team','Enter the name of your team:','');
 lstHome.Items.Add(sTeamName);
 lstAway.Items.Add(sTeamName);
 Append(tTeams);
 WriteLn(tTeams, sTeamName);
 CloseFile(tTeams);

This code will add every team name entered by the user to both the ListBoxes as well as to the teams.txt � le.

● Save and test your application. Once you have added a few teams, open the text � le on your storage medium to
verify that the teams have been added to the � le.

Example 5.3 Team tracker appending results

To see how you can save the data from your Team Tracker application to � le, work through the following example

● Open the existing TeamTracker_p project.
● Declare the following global variables:

Team tracker global variables
 tTeamTracker: TextFile;

● In the OnClick event of the [Save and Reset] button write code to do the following:
 A ssign the tTeamTracker variable to a � le called results.txt using the AssignFile method.

 Test if the � le results results.txt exists. If the � le does not exist, a new � le should be created.

If FileExists condition
If not FileExists(‘results.txt’) then
begin
 Rewrite(tTeamTracker);
 WriteLn(tTeamTracker, 'home team,away team,home score,away score');
end

Opens an existing � le for writing and allows
you to add data to the end of the � le

IT-Practical-LB-Gr11.indb 115 2019/10/02 10:15

116 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 5.3 Team tracker appending results continued

 if the text � le exists do the following:

— Declare two local variables called sHomeName and sAwayName.

— Set the value of sHomeName to equal the selected item in the lstHome ListBox.

— Set the value of sAwayName to equal the selected item in the lstAway ListBox.

— Use the Append procedure to open the text � le. This will ensure that any new lines of text you write to
the � le are added to the end of the � le, rather than overwriting the existing � le.

— Use the WriteLn procedure to add the name of the home team, name of the away team, home score
and away score, which are all stored in their respective variables (separated by commas), to the text � le
in the following format:

 <home team name>,<away team name>,<home score>,<away score>

— Close the � le using the CloseFile procedure.

The code for saving to the � le should now look as follows:

Writing to � le
 else
 begin
 sHomeName := lstHome.Items[lstHome.ItemIndex];
 sAwayName := lstAway.Items[lstAway.ItemIndex];
 Append(tTeamTracker);
 WriteLn(tTeamTracker, sHomeName + ',' +
 sAwayName + ',' + IntToStr(iHomeScore) + ',' +
 IntToStr(iAwayScore));
 CloseFile(tTeamTracker);
end;

● The next step is to reset your application back to the starting point, so that a new score can be added to the
text � le. To do this:
 Set the values of the iHomeScore and iAwayScore variables to 0 and clear the lblScore label’s caption.

 Add the following two lines of code to btnSaveAndReset button’s event.

Deselect ListBoxes
lstHome.ItemIndex := -1;
lstAway.ItemIndex := -1;

IT-Practical-LB-Gr11.indb 116 2019/10/02 10:15

117TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.3 Writing to a text � le

Example 5.3 Team tracker appending results continued

By changing the index of the selected item to -1, you are telling the ListBox to deselect all items. As a result, each
time you press the [Save and reset] button, you will save the data to your Text File before resetting the application to
its starting position.

● Save and test your application. Using the application, add scores for a few matches to your Text � le.

The Text � le will be saved in the same folder as the executable � le for your application.

Activity 5.5

5.5.1 Open the FavouriteSong_p project from the 05 – Favourite Song Folder. Create an OnClick event for the
[Select Song] button to write code to do the following:

a. Select your favourite song name from the Radio Group and add the name of the song to the end of text � le
FavouriteSong.txt.

b. Your application should ensure that:

i. The user has made a selection from the Radio Group.

ii. The text � le exists before attempting to write to it.

c. Save and run your program.

IT-Practical-LB-Gr11.indb 117 2019/10/02 10:15

118 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 5.5 continued

5.5.2 One of the best ways for people to lose weight is to count the calories they eat. If they eat fewer calories than
they burn in a day, they should lose weight. You have decided to help people lose weight by creating a calorie
counting application. The calorie counter will consist of four sections:

● A section to allow users to add the names of foods, as well as the calories they contain, to an existing
text � le.

● A section that reads the text � le and displays the meal options to the user. The user can then select a meal
and inform the program that they ate the meal.

● A section that displays all the meals eaten in a day, as well as the calories consumed per meal.
● A graph that shows how the food eaten per day compares to the daily limit of 2000 calories.

Open the project CalorieCounter_p from the 05 – Calorie Counter Folder. The following interface will display
when the program is run.

a. A list of available foods and their calories are stored in a text � le Food.txt in the project folder.

b. The text � le contains delimited data in the following format:

<Food Name>,<Calories>

The comma (,) acts as a delimiter, separating the food name from the calories.

The � rst three lines from the text � le:

BigMac Burger,600
Medium Pizza,1800
Green Salad,50

c. To display the graph, a TImage component will be used and 6 jpeg images are provided in the project folder.
These images contain graph values in steps of 20s.

IMAGE FILE NAME RANGE OF CALORIE CONSUMPTION (%)

0.jpg 0..19

20.jpg 20..39

40.jpg 40..59

60.jpg 60..79

80.jpg 80..99

100.jpg > 99

IT-Practical-LB-Gr11.indb 118 2019/10/02 10:15

119TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.3 Writing to a text � le

Activity 5.5 continued

d. In addition, some data structures have been declared for you. These data structures and their purposes are
listed below:

DATA STRUCTURE PURPOSE

arrFood A global array of type String which can hold a maximum of 50
items. This array will hold the names of the various food items
extracted from the text � le.

arrCalories A global array of type Integer which can hold a maximum of 50
items. This parallel array will hold the calories of the various food
items in arrFood.

iMax A global Integer variable which will be used to track the number
of elements in arrFood and arrCalories.

iTotalCalories A global Integer variable which tracks the total calories a user
has consumed.

e. Write code to add the functionality described for each of the events listed below.

Form Show

● Connect to the text � le Food.txt, opening the text � le for reading.
● Loop through the � le, reading each line and processing it, extracting the food item’s name and its

calorie value.
● Add the food item name to the lstOptions ListBox.
● Increment the iMax variable and use it to add the food item name to the arrFood array and its

corresponding calorie value to the arrCalories array.
● Load image � le 0.jpg into the imgGraph image component.

 To load an image into an Image component, we use the following code:

imgGraph.Picture.LoadFromFile(‘0.jpg’);

● Save and test your application.

IT-Practical-LB-Gr11.indb 119 2019/10/02 10:15

120 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 5.5 continued

[I Ate This!] button

● Extract the Item Index of the food item selected from the lstOptions ListBox.
● Use the Item Index and the arrFood array and arrCalories array to add the food item and its

corresponding calorie value to ListBoxes lstFoodNames and lstCalories respectively.
● Increment the variable iTotalCalories by the calories consumed (the calories should be extracted from

the arrCalories array).
● Calculate the percentage of calorie consumption using the following equation:

Percentage(%) = (iTotalCalories / 2000) * 100

● Based on the range of the percentage (%), load the relevant graph image. Refer to the graph image
� lenames and ranges in the table, in the introduction to this activity.

● Update the Calorie Counter in the lblCalories label and the Percentage Counter in the lblPercentage label.
● Save and test your application.

[Reset] button

● Clear all items in the lstFoodNames and lstCalories ListBoxes.
● Assign iTotalCalories to 0.
● Load image � le ‘0.jpg’ into the imgGraph image component.
● Display ‘0 / 2000’ in the lblCalories label and ‘0%’ in the lblPercentage label.
● Save and test your application.
[Add] button

● Extract data from the edtFoodName and edtCalories EditBoxes.
● Add the extracted data to the text � le Food.txt using the Food Name and the Calories with the

comma separating delimiter.

<Food Name>,<Calories>

● Add the Food Name to the lstOptions ListBox.
● Increment the value of iMax and add the Food Name to the arrFood array and the calories to the

arrCalories array.
● Save and test your application.

IT-Practical-LB-Gr11.indb 120 2019/10/02 10:15

121TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.4 Creating reports

You can use the data stored in text � les to produce meaningful reports. Example: Users vote for their
favourite song which is then stored in a text � le. From the data in the text � le, you can determine the song
of the year or the top three songs, how many people voted for each song and so on.

Example 5.4 Team Scores report

For this project, you will read the data you created in your Team Tracker project. To do this, open the TeamScores_p
project from the 05 – Team Scores Folder.

The following user interface is provided:

● The folder contains a text � le results.txt with delimited data formatted as follows:

<home team>,<away team>,<home score>,<away score>

The comma acts as a delimiter and there are three delimiters in each line.

For example:
Manchester United,Chelsea,6,1
 Manchester United is the home team

 Chelsea is the away team

 6 was the home team’s score

 1 was the away team’s score

● Create an OnClick event for the [Generate Report] button and write code to do the following:
 Assign a Text File variable tScores to the physical � le ‘results.txt’.
 Create a conditional statement that checks if ‘results.txt’ does not exist.

 If the � le does not exist, display an error message and close the application.

 If the � le exists: Open the tScores � le for reading, by using the Reset procedure

 Use a while-loop to read each line from the text � le and split the line to display the home team’s name, the
scores, and the away team’s name, separated by tab spaces in the RichEdit Box redOut. You will have to set
Paragraph tab spaces accordingly.

Creating reports5.4

 UNIT

IT-Practical-LB-Gr11.indb 121 2019/10/02 10:15

122 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 5.4 Team Scores report continued

● Save and run your application. You should now be able to read the results from your results.txt � le and display
them in your application.

Congratulations, you have just used all the techniques you learned in Grade 11 to create this report.

While the application may not look like much at this time, the techniques used to read the data and create this
application form the basis of most applications working with data, from data analysis tools to music players and games.

Activity 5.6

5.6.1 Open the ShopSales_p project from the 05 – Report Shop Sales Folder.

The data � les provided in a text � le named Sales.txt which contains delimited text in the following format:

<PRODUCT>#<SALES>

The # symbol acts a delimiter, separating the product name from its sales.

For example:

Bottled Water#32

● The product name is: Bottled Water
● The sales for Bottled Water is: 32

In the OnClick event of [Load Data] button write code to
do the following:

● Test whether � le Sales.txt exists or not.
● If Sales.txt exists:

 Assign and open the � le for reading.
 Loop through the text � le, reading each line and

processing the delimited text.
 Display the product name followed by a tab

space and then the product sales.
 Calculate and display the total number of

products sold.
 Calculate and display the average number of

products sold.

IT-Practical-LB-Gr11.indb 122 2019/10/02 10:15

123TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.4 Creating reports

Activity 5.6 continued

5.6.2 Open the ReportFavouriteSong_p project from the 05 – Report on Favourite Songs Folder:

The given code for the [Select Song] button allows users to vote for their favourite song.

There are 10 possible songs. Every time a user votes for a song, the song’s name is added as a new line to the
text � le FavouriteSong.txt.

Create an OnClick event for the [Report] button which will:

● Count how many times each song name appears in the text � le FavouriteSong.txt.
● Create a report that shows the 10 song names and the number of times each song was voted for.
● Save and run the program.

IT-Practical-LB-Gr11.indb 123 2019/10/02 10:15

124 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 5: Text � les

QUESTION 1

Open the project GamingWebsite_p from the 05 – Gaming Websites Folder.

An advertising agency is tracking the popularity of various gaming websites.

Data on the websites has been captured in a text � le named sites.txt with delimited text formatted as follows:

<SiteName>#<AverageRating>#<TotalRating>#<NumberOfRatings>

The hash(#) symbol acts as a delimiter.

Constructoid#3#80#27

1.1 In the form’s OnShow event write code to:

● Test if the � le sites.txt exists. If it exists, connect to, and open the � le for reading.
● Loop through the text � le, reading each line and adding it to the lstSites ListBox.

In the OnClick event of the [Display] Button write code to:

● Extract the selected item from the lstSites ListBox.
● Process the extracted data, separating the delimited data.
● Display the Site Name, Average, Total and Number of Ratings in separate lines in the redOut RichEdit

component.

Six image � les are provided in the project folder holding images representing ratings ranging from 0 stars to 5 stars.
For example, the � le name for the image with 5 stars is 5.jpg.

Use the Average Rating to generate a � le name by combining the rating with ‘.jpg’. Use this � lename to load the
appropriate image to the imgRating Image Box.

IT-Practical-LB-Gr11.indb 124 2019/10/02 10:15

125TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.4 Creating reports

CONSOLIDATION ACTIVITY Chapter 5: Text � les continued

QUESTION 2

Open project WebsiteUsers_p from the 05 – Website Users Folder.

Details on registered users for a popular website are stored in a text � le Users.txt.

Storing data into this text � le without any security would put the system at risk.
As a result, a user’s name is obfuscated (hidden) by inserting dummy data
between the actual data.

The actual data is found at the even positions of the provided text. For
example: FTBaYlHoKnU represents the name Talon

F T B a Y l H o K n U
1 2 3 4 5 6 7 8 9 10 11

First 3 lines from the Text File:

rMMhUlOeCnDgKiB
SAWsIaNnCdHaI
VABnOdKiFlVeK

In the OnClick event of the [Load Data] button write code to:

● Check if the Users.txt text � le exists. If the � le does not exist, display an error message and terminate the
program.

● Connect to the � le and open it for reading.
● Loop through the text � le, extracting a single line from the � le each time the loop runs.
● Process the extracted line, copying only the characters at even positions in the extracted line.
● Display the processed line (decrypted) in the redOut RichEdit Box.

QUESTION 3

Open project StaffLogin_p from the 05 – Staff Login Folder.

A business requires a login system for employees when they interact with a work computer. Details on users have
been captured in a text � le named staff.txt. The text � le contains delimited data formatted as follows:

<NAME>#<ID NUMBER>#<PASSWORD>

New words

obfuscated – the
deliberate act of creating
source or machine code
that is dif� cult for humans
to understand

IT-Practical-LB-Gr11.indb 125 2019/10/02 10:15

126 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 5: Text � les continued

For example:

Mike#9908045421087#ke

● Mike is the staff member’s name
● 9908045421087 is the staff member’s ID Number
● ke is the staff member’s password

For convenience, all passwords have been set to the last two letters of the staff member’s name.

Note: all staff members were born before the year 2000.

The following data structures have been declared globally:

DATA STRUCTURE TYPE PURPOSE

arrName Array [1..50] of String Stores names of employees

arrPassword Array [1..50] of String Parallel array to arrName, storing employee passwords

arrGender Array [1..50] of Char Parallel array to arrName and arrPassword: stores gender of
employees – M for Male and F for Female

arrAge Array[1..50] of Integer Parallel array to arrName, arrPassword and arrGender. Stores
age of employees

iMax Integer Stores the number elements in the arrays

CURRENTYEAR Integer constant Stores the current year – This value should be changed in its
declaration from 2019 to the current year, if necessary

Explanation of the SA ID Number:

Example: 9908045421087

● 99 is the year of Birth
● 08 is the month of Birth
● 04 is the day of Birth
● Digits 7–10 indicate whether the ID belongs to a Male or Female. If the number >= 5000, the ID belongs to a

male. If the number < 5000, the ID belongs to a female.

In this case, the gender code is 5421 meaning that this ID belongs to a male.

3.1 In the Form’s onShow event write code to:
● Connect to and open text � le staff.txt for reading.
● Loop through the � le, reading each line.
● Process each line, separating the name, ID number and Password.
● Increment the value of the iMax variable.
● Add the user’s name to the arrName array.
● Add the user’s password to the arrPassword array.
● From the user’s ID Number:

 Determine their Gender and store either ‘M’ or ‘F’ in the relevant index position of the
arrGender array.

 Calculate the user’s age by determining the difference between the year value from their ID Number
and the constant CURRENTYEAR. Store the user’s age in the relevant index position of the
arrAge array.

● Add the user’s name to the cmbLogin ComboBox.
● After the loop terminates, close the text � le.

IT-Practical-LB-Gr11.indb 126 2019/10/02 10:15

127TERM 3 I CHAPTER 5 TEXT FILES I UNIT 5.4 Creating reports

CONSOLIDATION ACTIVITY Chapter 5: Text � les continued

3.2 In the OnClick event of the [Login] button write code to:
● Extract the Item Index from the cmbLogin ComboBox to determine the index position (in arrName) of the

user attempting to login.
● Compare the password extracted from the edtPassword EditBox with a password from the arrPassword

array (the Index position extracted from cmbLogin can be used to determine which element from
arrPassword is tested). If the input password matches the corresponding password in arrPassword,
display the user’s details in the redOut RichEdit box (see the screenshot below for the format).

● If the passwords do not match, display an appropriate message.
● Furthermore, management requires that a log be kept of everyone who logs in.

When a user successfully logs in:

● Check whether text � le Log.txt exists. If it does not exist, create a new � le using the Rewrite procedure.
If it exists, open it for writing using the Append procedure.

● Add the user’s name (who logged in successfully) as a new line in the Log.txt � le.
● Close the � le.

3.3 In the OnClick event of the [Register] button write code to:
● Use InputBox dialogs to prompt the user to enter their name, ID Number and Password.
● Add the input data to the text � le staff.txt, formatted with the ‘#’ delimiter separating the data in the

following format:

<NAME>#<ID NUMBER>#<PASSWORD>

Note: Due to the design of the program, you’ll have to terminate the application and run it again for the new name
to appear in the ComboBox.

3.4 In the OnClick event of the [Report on Users] button write code to:
● Display the contents of the arrays arrNames, arrGender and arrAge in neat columns, with

suitable headings.
● Calculate and display:

 The average age of all staff members.
 The number of male staff members and the number of female staff members.

IT-Practical-LB-Gr11.indb 127 2019/10/02 10:15

128 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 5: Text � les continued

3.5 In the OnClick event of the [Report on Logins] button write code to:

Open � le log.txt text � le for reading. Loop through the � le, displaying all logins.

Count and display the total number of logins.

3.6 In the OnClick event of the [Search for User Login] button write code to:
● Prompt the user to input the name of a staff member using a DialogBox.
● Loop through the log.txt text � le to count the number of times the staff member has logged in.
● If the staff member has never logged in, display a DialogBox with the message ‘User has not logged in’.
● If the staff member has logged in, display the number of times their name appears in the log � le using a

DialogBox.

Sample Data 1

S ample Data 2

IT-Practical-LB-Gr11.indb 128 2019/10/02 10:15

129TERM 3 I CHAPTER 6 USER-DEFINED METHODS

TERM 3

CHAPTER

6USER-DEFINED METHODS

CHAPTER UNITS

Unit 6.1 User-defi ned methods

Unit 6.2 Procedures

Unit 6.3 Functions

Unit 6.4 Basic input validation techniques

 Learning outcomes

At the end of this chapter you should be able to:
● defi ne and describe user-defi ned methods
● give the structure of a function and a procedure
● differentiate between a function and a procedure
● use functions and procedures to solve problems
● explain the relationship between actual parameters and formal parameters
● explain how value parameters work
● perform basic input validation using code.

INTRODUCTION

You learned that a method is a subprogram (small piece of code) written to
perform a speci� c task. The string and mathematical methods that you learned
about in previous chapters are built-in (or pre-de� ned) methods found in Delphi.

In this chapter, you are going to focus on user-de� ned methods. User-de� ned

methods are written by the user to perform a speci� c task. Just like built-in
methods, user-de� ned methods can be de� ned and used anywhere in a program.

IT-Practical-LB-Gr11.indb 129 2019/10/02 10:15

130 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

6.1

Delphi has a large number of built-in methods. In the previous chapters you worked with mathematical
and String methods such as Random, Copy and Inc. You also used some methods of components such
as Clear and SetFocus. You also learnt about data conversion methods such as IntToStr and StrToFloat.
By calling one of these methods, you can use a single line of code to complete a task that would normally
take you multiple lines to do without the method.

Methods make a program:
● Modular – a program is broken into simpler subtasks and these subtasks are kept as separate

modules. The use of modular programming structure enhances the accuracy and clarity of a
program.

● More readable – It divides a program into smaller and more understandable tasks.
● Easier to debug.
● Easier to update.
● Less repetitive – it can shorten code, that is, if a method is called several times, it saves repetition

of code.
● Simpler to understand.
● More ef� cient.

There are two types of methods:
● procedures
● functions.

The differences between a function and a procedure are listed in the table below.

Table 6.1: Differences between a function and a procedure

FUNCTION PROCEDURE

A call to a function is always within another statement.

Examples:

 iNum := StrToInt(edtInput.text);
 rSquare := sqr(rVal));

● where StrToInt & Sqr are function methods

A call to a procedure is a stand-alone statement.

Examples:

 memDisplay.Clear;
 edtAmount.SetFocus;

● Clear and SetFocus are procedure methods of the
MemoBox and EditBox respectively.

A function always returns a single value.

Example:

memoDisplay.lines.
Add(FloatToStr(sqrt(25)));
rX := Random();

● The function sqrt calculates the square root of 25
and returns the value of the calculation.

● The FloatToStr function converts this value into a
string.

● The return value from the FloatToStr function
conversion is displayed in a MemoBox

A procedure does not return a value through its name.

Example:

 ShowMessage('Delphi is fun');
 AssignFile(tFile,'Scores.txt');

● The ShowMessage procedure displays text but does
not return a value

● The AssignFile procedures assigns the logical fi le
tFile to the physical fi le Scores.txt that is stored on
a storage medium.

● A function starts with the keyword, Function. ● A procedure starts with the keyword, Procedure.

● A function name is assigned a data type. ● A procedure name is not assigned a data type.

Introduction to user-de� ned methods

UNIT

IT-Practical-LB-Gr11.indb 130 2019/10/02 10:15

131TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.1 Introduction to user-de� ned methods

USER DEFINED PROCEDURES AND FUNCTIONS
In addition to using built-in methods, programmers can write their own methods.
User-de� ned methods work in much the same basic way as built-in methods
except that the user creates the procedures and functions. However, unlike built-
in methods, user-de� ned methods:
● need to be created from scratch by the programmer.
● requires more effort from the programmer to create a method.
● also allows the programmer to create a method that does exactly what he or

she wants it to do.

Once the method has been created, it can be used as often as it is needed in an
application by simply calling the method’s name.

Activity 6.1

6.1.1 What is a user-de� ned method?

6.1.2 What is the difference between a function and a procedure?

Did you know

All events (such as a
button’s OnClick event) are
procedures. To verify this,
you can create an OnClick
event for any button and
look at the code. Before the
event’s name, you will see
the keyword, Procedure.

New words

user-de� ned – is methods
written by programmers
themselves

IT-Practical-LB-Gr11.indb 131 2019/10/02 10:15

132 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

PROCEDURES WITH NO PARAMETERS
You have already used procedures with no parameters. Examples of procedures with no parameters
include the following:
● Randomize
● edtNumber.setFocus
● memDisplay.Clear

setFocus is a procedure with no parameters of the EditBox component and Clear is a procedure with no
parameters of the MemoBox component.

Example 6.1 memDisplay.Clear;

● The word procedure indicates that the Clear method is a procedure.
● The semi-colon(;) immediately after Clear indicates that the procedure does not have parameters.

DECLARING AND DEFINING A PROCEDURE WITH NO PARAMETERS
The procedure is declared as a method of the form as follows:

 private
 procedure NameOfProcedure;

The procedure is de� ned in the body of the program as follows:

procedure <className>.<NameOProcedure>;
var …. //variables with local scope
begin
 // body of the procedure
end;

Example 6.2

Below is code for the ThreeNumbers_p project that contains the following:

● A procedure called SumOfNumbers that determines and displays the sum of three numbers
● A procedure called Highest that determines and display the highest of three numbers
● A procedure called Line that displays a line made up of the ‘=‘ symbol

Procedures6.2

UNIT

IT-Practical-LB-Gr11.indb 132 2019/10/02 10:15

133TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.2 Procedures

Example 6.2 continued

● [Determine] button: that reads three numbers and calls procedures SumOfNumbers, Line and Highest

unit ThreeNumbers_u;
interface
uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls;

type
 TfrmThreeNumbers = class(TForm)
 redResults: TRichEdit;
 btnDetermine: TButton;
 edtNum1: TEdit;
 edtNum2: TEdit;
 edtNum3: TEdit;
 lblNum1: TLabel;
 lblNum2: TLabel;
 lblNum3: TLabel;
 procedure btnDetermineClick(Sender: TObject);

 private
 { Private declarations }
 procedure SumofNumbers;
 procedure Highest;
 procedure Line;

 public
 { Public declarations }
 end;
var
 frmThreeNumbers: TfrmThreeNumbers;
 iNum1,iNum2,iNum3:Integer;
 sDisplay:string;
implementation
{$R *.dfm}

procedure TfrmThreeNumbers.btnDetermineClick(Sender: TObject);
begin
 iNum1 := StrToInt(edtNum1.Text);
 iNum2 := StrToInt(edtNum2.Text);
 iNum3 := StrToInt(edtNum3.Text);
 SumOfNumbers;
 Line;
 Highest;
 Line;
end;

The declaration of the procedures

The procedures are in the Private section because
they will only be assessed within this unit.

iNum1, iNum2 and iNum3 are declared non-locally (globally)
because three different procedures need to access the values.

Procedure calls

A procedure is called (activated) by its name. Control is transferred from the calling statement to the
procedure. Once the procedure execution is complete, control is transferred to the next statement
after calling the statement.

IT-Practical-LB-Gr11.indb 133 2019/10/02 10:15

134 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 6.2 continued

procedure TfrmThreeNumbers.Highest;
var iLarge:Integer;
begin
 if (iNum1 > iNum2) and (iNum1 > iNum3) then
 ilarge := iNum1
 else
 if iNum2 > iNum3 then
 iLarge := iNum2
 else
 iLarge := iNum3;
 sDisplay := 'Highest Number: '+ IntToStr(iLarge);
end;

procedure TfrmThreeNumbers.SumofNumbers;
var iSum:Integer;
begin
 iSum := iNum1 + iNum2 + iNum3;
 sDisplay := 'Sum: '+ IntToStr(iSum);
end;
procedure TfrmThreeNumbers.Line;
begin
 redResults.Lines.Add(sDisplay);
 redResults.Lines.Add('===========================');
end;

end.

When the program is executed, it will display the following:

Notes:

● In the example, because iNum1, iNum2 and iNum3 are declared non-locally (globally), their values can be
changed from any procedure in the program.

● The procedure Line is called twice in the procedure Determine.
● You can type the procedure or alternatively let Delphi quickly create a procedure framework for you.

Name of the Procedure

Name of the Class appears before the procedure name. This indicates
that the procedure belongs to the class (form TfrmThreeNumbers).

User de� ned
procedure Highest

User de� ned
procedure
SumOfNumbers

User de� ned
procedure line

IT-Practical-LB-Gr11.indb 134 2019/10/02 10:15

135TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.2 Procedures

Example 6.2 continued

● Once you declare a procedure, you can easily create a framework for the procedure in the following manner:
 Place your cursor anywhere in the name of the procedure in the procedure declaration statement.

For example:

 Private
 Procedure Smallest;

 Press <Shift> + <Crtl> + <c> simultaneously. The following framework will appear:

procedure TfrmThreeNumbers.Smallest;
begin

end;

● If you don’t use the class name before the procedure name, you cannot access the components of the class as
you would normally do.

procedure TfrmThreeNumbers.SumofNumbers;
var iSum:Integer;
begin
 iSum := iNum1 + iNum2 + iNum3;
 TfrmThreeNumbers.redResults.Lines.Add('Sum: '+ IntToStr(iSum));
end;

Activity 6.2

6.2.1 Indicate whether the statement below is true or false:

‘Non-local (global) variables values can be changed in a procedure.’

6.2.2 Explain and correct the following error:

“undeclared identifi er:SumOfNumbers” error when the SumOfNumbers procedure is called. The SumOfNumbers
procedure has been correctly defi ned.

6.2.3 Open the ThreeNumbers_p project in the 06 – Three Numbers Folder and do the following:

a. Add a procedure Smallest to determine and display the smallest of the three numbers.

b. Add a procedure SwapColour to swap the form’s current colour from either black to white or white to black,
that is, if the form’s colour is black, it must change to white and vice versa.

c. Create an onCreate event to set the forms colour to black.

d. Swap the colour of the form using the procedure SwapColour as follows:

● when the [Determine] button is clicked
● just before the Determine procedure is exited.

Click anywhere in the name of the procedure

Form Name removed

If the form name is removed from the procedure de� nition, then the form name
has to be added before all components in the body of the procedure

IT-Practical-LB-Gr11.indb 135 2019/10/02 10:15

136 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 6.2 continued

6.2.4 Open the Shapes_p project in the 06 – Shapes Folder and do the following:

a. Write a procedure Square that will create and display a square shape as follows:

b. Write a procedure Triangle that will create and display a triangle as follows:

c. Write code for the OnClick event for the [Create] button to display a square, triangle
and a square as shown below:

IT-Practical-LB-Gr11.indb 136 2019/10/02 10:15

137TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.2 Procedures

Activity 6.2 continued

6.2.5 Open the UniqueNumbers_p project in the 06 – Unique Numbers Folder and do the following:

a. Write a procedure Generate to randomly generate 10 unique values in the range 10 to 99 and store the
values in arrNumbers.

b. Write a procedure Display to display the elements of arrNumbers horizontally.

c. Write a procedure Sort to sort the elements of arrNumbers in descending order.

d. Write code for the OnClick event for the [Determine] button to:

● generate the unique numbers
● display the original array with an appropriate message
● sort the elements in the array
● display the sorted array with an appropriate message.

PROCEDURES WITH PARAMETERS
In the previous section you created procedures that could be called without any additional information to
complete a speci� c task. Compare these procedures with a procedure like the ShowMessage procedure.
When calling ShowMessage, you use the following syntax:

ShowMessage syntax
ShowMessage(sOutput);

Without providing a value to ShowMessage, the procedure cannot display your message.

DECLARING AND DEFINING A PROCEDURE WITH PARAMETERS
To add parameters to a procedure, you can use the following syntax:

Procedure with parameters
procedure ClassName.ProcedureName(parameterName1 : type1; parameterName2 : type2, …);
var
 var1 : Type;
begin

 Statement1;
 Statement2;
 ...
 Statement1000;
end;

Notes:
● The procedure with parameter/s is declared as a method of the form as follows:

 private
procedure NameOfProcedure(List of formal parameters);

 Example:
 Private
 Procedure ThreeNumbers(iNo1,iNo2,iNo3:integer);

● The variable(s) declared next to the procedureName in the procedure
de� nition is/are known as formal parameter(s). It is declared in the same
way as you would declare a variable.

● Formal parameter(s) has local scope.

Formal parameter list

Note: Semi-colons are used to separate data types

New words

formal parameter – to
declare variable(s) next to
the procedure name

IT-Practical-LB-Gr11.indb 137 2019/10/02 10:15

138 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

● There are two types of formal parameters:
 Variable parameters: Variables parameters are preceded by the keyword VAR. You will learn

about variable parameters during your tertiary studies in programming.
 Value parameters: This will be discussed later.

CALLING A PROCEDURE WITH PARAMETERS
To call a procedure with parameters, you indicate the name of the procedure followed by a list of values.
For example:

ProcedureName(Value1, Value2 ... Value1000);

Relationship between arguments and parameters

Procedure de� nition

Procedure TformThreeNumbers(iNo1,iNo2,iNo3:integer);

Call statement

ThreeNumbers(iNum1,iNum2,iNum3)

Notes:
● The values you pass to the procedure must be the same number, order, and of the same type as the

parameters (method signature) de� ned in the formal parameter list:
 If there are three formal parameters in the formal parameter list, then the call statement must

supply three arguments.
 The data type of each argument value must match the data type of its corresponding formal

parameter.
 The order of the arguments must be in the same order as in the formal parameter list.

● The value of the � rst argument is assigned to the � rst formal parameter, the second argument value
is assigned to the second parameter and so on.

● Value parameters: When a procedure is called, memory
locations are created for each of the formal parameters and the
values of the arguments are assigned to the corresponding
formal parameters. Changes made to a value parameter will not
affect its corresponding argument. When the procedure is
exited, the memory locations of the formal parameters ‘die’
away.

● Since the formal parameters are value parameters, the
arguments in the call statement can be:
 variables
 constants
 expressions.

Argument List

The values within brackets are known as arguments

Formal Parameter List
with three parameters

Actual(Argument) List

New words

value parameter – when a
procedure is called, memory
locations are created for each of
the formal parameters and the
values of the arguments are
assigned to the corresponding
formal parameters. Changes
made to a value parameter will
not affect its corresponding
argument. When the procedure is
exited, the memory locations of
the formal parameters ‘die’ away

IT-Practical-LB-Gr11.indb 138 2019/10/02 10:15

139TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.2 Procedures

● Here is an example of call statements:

 Var x,y,z:integer;
 sLine:string;
 bFlag:boolean;
 …
 Sort(x,y,z); // arguments are variables
 Sort(5,6,3); // arguments are constants
 Sort(x + 1,y-2,z-y); // arguments are expressions
 Sort(x,6,z-y); // arguments are a combination of a variable, a

constant and an expression
 Check(true,’Green’,6); // arguments are constants of type Boolean,

string and integer

METHOD SIGNATURE
Each method (procedure or function) has a method signature. The name of the method and its formal
parameter list is referred to as the method signature of a method. You can get more than one method with
the same name. This is called method overloading. In method overloading a procedure is differentiated
from another procedure by its method signature.

Example of a procedure with a parameter

procedure TFrmGreetings.SayHello(sWhat:string)
begin
 ShowMessage('Hello ' + sWhat) ;
end;

Note:
● The name of the form is TfrmGreeting
● The name of the procedure is SayHello
● The procedure has one formal parameter sWhat of type String
● The procedure displays the word ‘Hello’ followed by the string sWhat that it received. For example, if

it received ‘Tarzan’ then it would display ‘Hello Tarzan’.

Guided activity 6.1

A company needs to provide a quotation to lay grass and to fence a rectangular property. Use the AreaPerimeter_p
project from the 06 – Area Perimeter folder. Do the following:

● Create an OnFormCreate event to initialise a variable rTotalCost to 0.
● Write a procedure CalculateCost that will receive unit cost, the unit of measurement and a message. The message

will either indicate ‘Cost to lay Grass’ or ‘Cost to Fence’. The amount payable is calculated by multiplying the unit
cost by the unit of measurement. Display the message and the amount payable.

● [Read] button: Prompts the user to input the length and breadth of a property.
● [Lay Grass Cost] button: The area of the rectangular property is calculated and the user is prompted for the unit cost

of laying grass per m2. The procedure CalculateCost is called with the arguments unit cost per square metre, the
area and the message ‘Cost to lay Grass’.

● [Fence Property Cost] button: The perimeter is calculated and the user is prompted for the unit cost per metre for
the fencing. The procedure CalculateCost is called with the arguments unit price per metre, the perimeter and the
message ‘Cost to fence’.

New words

method overloading – to have
more than one method with the
same name

method signature – to name a
method and its formal
parameters list

IT-Practical-LB-Gr11.indb 139 2019/10/02 10:15

140 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 6.1 continued

● [Total cost] button: Displays the total cost of laying grass and of fencing the property.

unit AreaPerimeter_U;
interface
uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls, ComCtrls, ExtCtrls;
type
 TfrmAreaPerimeter = class(TForm)
 redDisplay: TRichEdit;
 btnRead: TButton;
 btnCostGrass: TButton;
 btnCostFence: TButton;
 btnTotalCost: TButton;
 procedure btnReadClick(Sender: TObject);
 procedure btnCostGrassClick(Sender: TObject);
 procedure btnCostFenceClick(Sender: TObject);
 procedure btnTotalCostClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 { Private declarations }
 procedure CalculateCost(rCost, rMeasurement: real;sMessage:string);
 public
 { Public declarations }
 end;

var
 frmAreaPerimeter: TfrmAreaPerimeter;
 rLength, rBreadth,rTotalCost : real;

implementation
{$R *.dfm}

procedure TfrmAreaPerimeter.btnReadClick(Sender: TObject);
begin
 rLength := StrToFloat(inputbox('','Enter length of a property',''));
 rBreadth := StrToFloat(inputbox('','Enter breadth of a property',''));
 redDisplay.Lines.Add('Length: '+ #9 + #9 + FloatToStrF(rLength,ffFixed,10,2));
 redDisplay.Lines.Add('Breadth: '+ #9 + #9 + FloatToStrF(rBreadth,ffFixed,10,2));
end;

procedure TfrmAreaPerimeter.btnCostGrassClick(Sender: TObject);
var rArea,rCost:Real;
begin
 rArea := rLength * rBreadth;
 rCost := StrToFloat(inputbox('','Enter cost per square metre of

grass',''));
 redDisplay.Lines.Add('Area: '+ #9 + #9 + FloatToStrF(rArea,ffFixed,10,2));
 redDisplay.Lines.Add('Unit price of Grass: '+ #9 + FloatToStrF(rCost,

ffCurrency,10,2));
 CalculateCost(rCost,rArea,'Cost to lay Grass');
end;

Procedure CalculateCost
declaration.

Variables declared non-locally (globally) because they
will be used in different procedures.

Reads and displays the
length and breadth.

Calculates and displays the area, prompts user for
cost per square metre and displays this value.

Call procedure CalculateCost and
sends the values: cost per square
metre, area and ‘Cost to lay grass’.

IT-Practical-LB-Gr11.indb 140 2019/10/02 10:15

141TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.2 Procedures

Guided activity 6.1 continued

procedure TfrmAreaPerimeter.btnCostFenceClick(Sender: TObject);
var rPeri,rCost:Real;
begin
 rPeri := 2 * (rLength + rBreadth);
 redDisplay.Lines.Add('Perimeter: '+ #9 + FloatToStrF(rPeri,ffFixed,10,2));
 rCost := strtofl oat(inputbox('','Enter cost per meter of fencing',''));
 redDisplay.Lines.Add('Unit Price of Fence:'+ #9 + FloatToStrF(rCost,

ffCurrency,10,2));
 CalculateCost(rCost,rPeri,'Cost to fence');
end;

procedure TfrmAreaPerimeter.btnTotalCostClick(Sender: TObject);
begin
 redDisplay.Lines.Add('Total Cost: '+ #9 + FloatToStrF(rTotalCost,

ffCurrency,10,2));
end;

procedure TfrmAreaPerimeter.CalculateCost(rCost, rMeasurement:
real;sMessage:string);
var rAmountPayable: real;
begin
 rAmountPayable := rCost * rMeasurement;
 redDisplay.Lines.Add(sMessage + #9 + FloatToStrF(rAmountPayable, ffcurrency,8,2));
 rTotalCost := rTotalCost + rAmountPayable;
end;

procedure TfrmAreaPerimeter.FormCreate(Sender: TObject);
begin
 rTotalCost := 0;
end;

end.

Calculates and displays the perimeter, prompts
user for cost per metre and displays this value.

Call procedure CalculateCost and
sends the values: cost per metre,
perimeter and ‘Cost to fence’.

Procedure CalculateCost is de� ned with three formal
parameters: rCost, rMeasurement and sMessage. Two
parameters are type real and one parameter type string.

The amount payable rAmountPayable is
calculated. The message received and
the amount payable is displayed.

rAmountPayable is added
to the total cost rTotalCost.

The total cost rTotalCost set to 0 when the form is created.

IT-Practical-LB-Gr11.indb 141 2019/10/02 10:15

142 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 6.3

6.3.1 Answer the following questions in your own words.

a. Identify one built-in procedure with parameters and one built-in function without parameters.

b. Identify three built-in procedures without parameters and three built-in functions with parameters.

c. Explain what modular programming is and list three advantages of modular programming.

6.3.2 Open the AreaPerimeter_p project in the 06 – Area Perimeter Folder and write code to do the following:

a. Add a procedure Discount to give a discount of 10% on the total cost if the total cost exceeds R5000.
Display the discount and fi nal amount payable.

b. Call procedure Discount so that it also displays the discount and fi nal cost payable.

Example of sample runs:

6.3.3 Study the following procedures and identify the mistakes made in each procedure.

Procedure 1

SetFormHeight(iHeight : Integer);
begin
 frmMain.Height := iHeight;
end;

Procedure 2

procedure FormSize(iHeight, iWidth, sText);
begin
 frmMain.Height := iHeight;
 frmMain.Width := iWidth;
 frmMain.Color := clWhite;
 lblResult.Caption := sText;
end;

Procedure 3

procedure ShowValue(iValue, iNumberOfTimes : Integer, sDescription :
String);
var
 i, iNumberOfTimes : Integer;
begin
 for i := 1 to iNumberOfTimes do
 ShowMessage(sDescription + ‘: ‘ + IntToStr(iValue));
end;

IT-Practical-LB-Gr11.indb 142 2019/10/02 10:15

143TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.2 Procedures

Activity 6.4

6.4.1 Open SquareShapes_p project in the 06 – Square Shapes Folder and do the following:

a. Write a procedure Square that will receive an integer value iSize and will draw a
square of size iSize. Example if iSize is 10, then the following square will be drawn:

b. Create an OnClick event for the [Squares] button that will read the size of the
square from the EditBox and store the value in variable iSquareSize. Display three
squares with each square’s size one smaller than the size of the previous square
displayed. The size of the fi rst square will be size read from the EditBox.

Note: Call procedure Square to display the squares.

6.4.2 A word competition is being held at your school. Learners are required to come up with three words that are
palindromes. A palindrome is a word that is spelt the same forwards and backwards.

Learners are awarded 1 point per letter of each palindromic word plus an additional 2 points. A prize is awarded
if the learner scores 20 points and above.

Open the project WordCompetition_p from the 06 – Word Competition Folder and do the following:

a. Write a procedure Palindrome that will accept a word and determine whether the word is a palindrome or
not. Display the word if it is a palindrome.

b. Write a procedure AwardPoints that will accept a palindromic word and determine the points awarded to
the word. The points are added to a variable iTotalPoints.

c. Write code for the OnClick event for the [Results] button to do the following:

● Read three words from the EditBoxes and store the words in arrWords.
● Call procedure Palindrome to determine whether each word is a palindrome or not.
● Call procedure AwardPoints when calculating the points.
● Display the number of palindrome words.
● Display the total points earned.
● Display whether a learner is awarded a prize.

IT-Practical-LB-Gr11.indb 143 2019/10/02 10:15

144 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Functions work in the same way as procedures – they also perform a speci� c task and can be called from
anywhere in your program.

Syntax of a function without parameters

Function FunctionName: ReturnType;
var
 var1 : Type;
begin
 Statement1;
 Statement2;
 ...
 Result := Value of ReturnType;
end;

Syntax of a function with parameters

function FunctionName(parameter1 : Type; parameter2 : Type) : ReturnType;
var
 var1 : Type;
begin
 Statement1;
 Statement2;
 ...
 Result := Value of ReturnType;
end;

Calling a function

Since a function always returns a value, a call to a function is always within another statement such as:
● an assignment statement
● a selection statement
● an output statement.

Guided activity 6.2 CalculatePower

Write a function CalculatePower that accepts two integer numbers iBase and iExponent and returns the results of
iBase raised to the power iExponent.

CalculatePower function
function TnameOfForm.CalculatePower(iNumber, iExponent : Integer) : Integer;
var
 i, iOutput : Integer;
begin
 iOutput := 1;
 for i := 1 to iExponent do
 iOutput := iOutput * iNumber;
 Result := iOutput
end;

A function starts with the keyword FUNCTION.

Function name is assigned a data type.

A function always returns a value of the data type in
the function header. The value is assigned to a reserved
word Result OR can be assigned to the function name.

Functions6.3

UNIT

IT-Practical-LB-Gr11.indb 144 2019/10/02 10:15

145TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.3 Functions

Guided activity 6.2 CalculatePower continued

Write a function CalculateFactorial that returns the factorial of a number. The number is received as a parameter.
The factorial (indicated by the ! symbol) of a number N is determined as follows:

N! =1*2*3, …,*N

Factorial function
function TnameOfForm.CalculateFactorial(iNumber : Integer) : Integer;
var
 i, iOutput : Integer;
begin
 iOutput := 1;
 for i := 1 to iNumber do
 iOutput := iOutput * i;
 Result := iOutput;
end;

Activity 6.5

6.5.1 Open the Vowels_p project in the 06 – Vowels Folder and do the following:

a. Write a function CountVowels that receives a word and returns the number of vowels in the word.

b. Write a function RemoveVowels that receives a word and returns the word with the vowels removed.

c. Write code for the [Process] Button. Each element of the array arrWords contains a word. For each element,
display the word, the number of vowels in the word and the word with the vowels removed. The display must
be in tabular form. Call function CountVowels and RemoveVowels.

Save and run your program.

IT-Practical-LB-Gr11.indb 145 2019/10/02 10:15

146 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 6.5 continued

6.5.2 Open the PowerFactorial_p project in the 06 – Power Factorial Folder and write code to do the following:

a. Write a function CalculatePower that accepts two integer numbers iBase and iExponent and returns the
results of iBase raised to the power iExponent.

b. Write a function CalculateFactorial that returns the factorial of a number:
The number is received as a parameter. The factorial (indicated by the ! symbol) of a number N is
determined as follows:

 N! =1*2*3, …,*N

c. [SelectOption] button: Select an option, Calculate Power or Calculate Factorial. If no option has been
selected, then display a message ‘No option selected’. If the Calculate Power option is selected then enable
the panel to calculate power. If the Calculate Factorial option is selected, then enable the panel to calculate
a factorial.

d. [Power] button: Reads the data: the base and exponent from the EditBoxes, calculates and displays the
results in the answer EditBox. Call the function CalculatePower to perform the power calculation.

e. [Factorial] button: Reads a number from the EditBox, calculates the factorial and displays the factorial in the
EditBox. Call the function CalculateFactorial to calculate the factorial of a number.

Sample Output after both the [Calculate Power] and [Calculate Factorial] buttons are selected:

IT-Practical-LB-Gr11.indb 146 2019/10/02 10:15

147TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.3 Functions

Activity 6.5 continued

6.5.3 Open the ImprovedWordCompetition_p project in the 06 – Improve Word Competition Folder and write code
as follows:

a. Write a function CheckPalindrome that will accept a word as a parameter and return TRUE if the word is a
palindrome; otherwise it will return FALSE.

b. Write a function AwardPoints that will accept a word as a parameter and calculates the points a user is
awarded. The points are calculated by adding the number of characters in the word plus an additional
two points.

c. Write code for the OnClick event for the [Results] button and do the following:

● Read the three words from the edit component and store the words in an array arrWords.
● Call the method CheckPalindrome for each word to test whether it is a palindrome or not. If a word is a

palindrome, then call the AwardPoints to calculate the points awarded for a word.
● Display the words that are palindromes.
● Display how many of the words are palindromes.
● Display the total points iTotalPoints obtained by a competitor.

FOR ENRICHMENT ONLY

METHODS WITH ARRAY AS PARAMETER
You can pass an array to a method. To use an array as a parameter in a method, you need to declare a
new data type as shown below:

…
uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs, StdCtrls;

type
 arrGuesses=array[1..9] of Integer;
 TfrmMake15 = class(TForm)
 …

The method is then declared:

private
 function isUnique(arrVal:arrGuesses):boolean;

The method is then de� ned:

function TfrmMake15.isUnique(arrVal: arrGuesses): boolean;
var bFlag:Boolean;
 i,j: Integer;
begin
 bFlag := True;
 for i := 1 to 8 do
 for j := I + 1 to 9 do
 if arrVal[I] = arrVal[J] then
 begin
 bFlag := False;
 end;
 result := bFlag;
end;

New data type arrGuessses declared above the class de� nition

The name of the new data type arrGuesses is used in the declaration

IT-Practical-LB-Gr11.indb 147 2019/10/02 10:15

148 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

For any data input, a validation check is used to ensure that the data received is actually what is required
by the application. Validation checks are a safeguard against incompatible values that could cause
interruptions in the � ow of the program or cause the program or operating system to crash. Validation
techniques do not determine whether the data input is accurate. Different validation techniques are used
to validate data input.

DATA TYPE CHECK
You can test whether the data entered is of the required data type using three options. These are data type
check for:
● an Integer
● a Real number
● a String with letters and space.

DATA TYPE CHECK FOR AN INTEGER

function TValidation.isValidInteger(sValue, sFieldName: String): boolean;
Var
 bFlag: boolean;
 iNum: integer;
begin
 bFlag := False;
 try
 begin
 iNum := StrToInt(sValue);
 bFlag := true;
 end;
 except
 ShowMessage('Invalid Number for ' + sFieldName + 'Error');
 bFlag := False;
 end;
 result := bFlag;

end;

DATA TYPE CHECK FOR A REAL NUMBER

function TValidation.isReal(sValue, sFieldName: String): boolean;
Var
 bFlag: boolean;
 rNum: real;
begin
 bFlag := False;
 try
 begin
 rNum := StrToFloat(sValue);
 bFlag := true;
 end;
 except
 ShowMessage('Invalid Number for ' + sFieldName + 'Error');
 bFlag := False;
 end;
 result := bFlag;

end;

Exception Handling used.

• Try Section
 The string is converted to an integer and bFlag set to TRUE

indicating the conversion was � ne.

• Except Section
 This is activated when the conversion from string to integer did

not take place correctly. bFlag is set to FALSE.

Basic input validation techniques6.4

UNIT

IT-Practical-LB-Gr11.indb 148 2019/10/02 10:15

149TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.4 Basic input validation techniques

DATA TYPE CHECK FOR A STRING WITH LETTERS AND SPACE

function TValidation.isValidStringAZ(sValue: String): boolean;
Var
 bFlag: boolean;
 i, iLength: Integer;
begin
 if Length(sValue) <> 0 then
 begin
 i := 1;
 bFlag := true;
 while (i <= Length(sValue)) AND (bFlag = true) do
 begin
 if not(upcase(sValue[i]) in [‘A’ .. ‘Z’, ‘ ‘]) then
 begin
 bFlag := False;
 end;
 inc(i);
 end;
 end
 else
 begin
 bFlag := False;
 end;
 result := bFlag;
end;

RANGE CHECK
Range validations are used to ensure that data input matches the expected range limitations imposed by
the application. For example, in the case of validating a cell phone number, you need to check whether
the number contains only digits and 10 characters in length.

CHECKS WHETHER A CELLPHONE NUMBER IS VALID OR INVALID

function TValidation.IsValidCellNo(sCellNum: string): boolean;
var
 c: Integer;
 bFlag: boolean;
begin
 bFlag := true;
 c := 1;
 sCellNum := StringReplace(sCellNum, ' ', ' ', [rfReplaceAll]);
 if (Length(sCellNum) = 10) AND (sCellNum[1] = '0') then
 begin
 while (c <= 10) AND (bFlag = true) do
 begin
 if not(sCellNum[c] IN ['0' .. '9']) then
 begin
 bFlag := False;
 MessageDlg('Must contain digits only', mtError, [mbOK], 0);
 end;
 inc(c);
 end;
 end
 else
 begin // length not equal to 10
 bFlag := False;
 MessageDlg('Invalid Phone Number! Phone Number must be 10 digits long',
 mtError, [mbOK], 0);
 end;
 result := bFlag;
end;

Uses the StringReplace function to remove
spaces from the cell phone number

IT-Practical-LB-Gr11.indb 149 2019/10/02 10:15

150 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CHECKS WHETHER THE DATE ENTERED IS A VALID DATE

function TValidation.isValidDate(sDay: String; iMonth: Integer;
 sYear: String): boolean;
var
 bFlag: Boolean;
 mm, yy: Integer;
begin
 mm := iMonth;
 bFlag := true;
 if (mm = 4) OR (mm = 6) OR (mm = 11) then
 if (StrToInt(sDay) > 30) then
 begin
 ShowMessage('Only 30 days in month ' + IntToStr(mm) + 'Invalid Date');
 bFlag := False;
 end;
 if (mm = 2) then
 begin
 yy := StrToInt(sYear);
 if (yy mod 4 = 0) then
 begin
 if (StrToInt(sDay) > 29) then
 ShowMessage('Only 30 days in Feb ' + IntToStr(mm) + 'Invalid Date');
 bFlag := False;
 end
 else
 begin
 if not(StrToInt(sDay) = 28) then
 begin
 ShowMessage('Only 28 days in Feb ' + IntToStr(mm));
 bFlag := False;
 end;
 end;
 end;
 result := bFlag;
end;

PRESENCE CHECK
When a presence check is set up on a � eld then that � eld cannot be left blank, some data must be entered
into it. The presence check does not check that the data is correct, only that some data is present. For
example:

function TValidation.CheckEmpty(sValue: string): Boolean;
var
 bFlag: Boolean;
begin
 bFlag := true;
 if (sValue = ‘‘) then
 begin
 bfl ag := false;
 showmessage('Please enter a value');
 end;
end;

IT-Practical-LB-Gr11.indb 150 2019/10/02 10:15

151TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.4 Basic input validation techniques

Activity 6.6

6.6.1 A South African ID number is a 13-digit number that is defi ned by the following format: YYMMDDSSSSCAZ

a. The fi rst 6 digits (YYMMDD) are based on your date of birth. For example, 13 March 1998 is displayed as
980313.

b. The next 4 digits (SSSS) are used to defi ne your gender. Females are assigned numbers in the range
0000 – 4999 and males from 5000 – 9999.

c. The next digit (C) shows if you’re a SA citizen status with 0 denoting that you were born a SA citizen and
1 denoting that you’re a permanent resident.

d. The last digit (Z) is a checksum digit – used to check that the number sequence is accurate using a set
formula called the Luhn algorithm. The checksum digit (Z) is calculated as follows:
A = The sum of the odd-positioned digits (positions 1, 3, 5, 7, 9, 11 and excluding the13th digit)
B = The concatenation of the even-positioned digits (positions 2, 4, 6, 8, 10, 12)
C = The sum of the digits of the result B x 2
D = A + C
Z = 10 – (D mod 10)

Example: Calculate the checksum digit for the ID Number: 8801235111088

A: 8 + 0 + 2 + 5 + 1 + 0 = 16

B: 813118

C: 813118*2 = 1626236

Sum of the digits in 1626236

= 1 + 6 + 2 + 6 + 2 + 3 + 6

= 26

D: 42

Z: 10 – (42 mod 10)

= 10 – 2

= 8

Open ValidateInfo_p project in the 06 – Validate Information Folder and write code to do the following:

● Create a function isNotEmpty to receive an ID Number and return a value false if the ID number is empty;
otherwise return true.

● Create a function CalculateCheckSum to receive an ID number and calculate and return the checksum digit as
a string.

● Create a function isValidId to receive an ID number and return true if the ID number is valid; otherwise return
false. An ID number is valid if:
 It is 13 characters in length.
 All the characters are digits.
 The calculated checksum digit is equal to the last digit in the ID number. Call function CalculateCheckSum

to return the calculation for the checksum digit.
● [Validate and Extract] button: Read an ID number from the EditBox edtIdNo.

 Validate that data has been entered for the ID number in
the edtIdNo EditBox by calling the isNotEmpty function.

 Call function IsValidId to determine whether the ID
number entered is valid.

 Extract the date of birth from the ID number and display
the date of birth in the format yyyy/mm/dd.

 Display the gender of a person as either ‘Male’ or
‘Female’ using the gender digits in the ID number.

 Display the citizenship status of a person as either ‘South
African’ or ‘Permanent Citizen’ using the citizenship
status digit in the ID number.

New words

Luhn algorithm – is a
simple checksum formula
used to validate a variety of
identifi cation numbers,
such as credit card
numbers, IMEI numbers,
and Canadian Social
Insurance Numbers

IT-Practical-LB-Gr11.indb 151 2019/10/02 10:15

152 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 6: User-de� ned methods

QUESTION 1

Open the LearnerYearMark_p project from the 06 – Learner Year Mark folder.

1.1 Create a function CalculateYearMark to calculate a learner’s year mark. The function accepts the following
parameters:

● Test 1
● Test 2
● Assignment
● Exam

The average of the two tests form a quarter of the learner’s year mark, the assignment another quarter of
the year mark and the exam forms half of the learner’s year mark. The fi nal year mark must be rounded up
to the nearest integer.

Do the following:

a. Write code for the function CalculateYearMark.

b. Create an OnClick event for the [Calculate Learner Year Mark] button to read the marks for Test1, Test2,
Assignment and Exam. Call the function CalculateYearMark to calculate the year mark.

c. Display the year mark in the edtYearMark EditBox.

Open the ConvertMeasure_p project from the 06 – Convert Measurement folder.

1.2 Create a function Convert that receives number of bytes and the unit of measurement (KB, MB, GB or TB) to
convert the bytes to. The declaration of the function Convert:

Function Convert(NoBytes:integer;UnitOfMeasure:String):String;

Use the table below to convert to the required unit of measurement.

UNIT OF MEASUREMENT NUMBER OF BYTES

Kilobyte (KB) 1 000 bytes

Megabyte (MB) 1 000 000 bytes

Gigabyte (GB) 1 000 000 000 bytes

Terabyte (TB) 1 000 000 000 000 bytes

The function must return a string containing the answer of the conversion and the unit of measurement.

Example: if the function was called as follows:

 sAnswer := Convert(1200,'KB');
 //then the function will return 1.200 KB.

Do the following:

a. Write code for function Convert.

b. Create an OnClick event for the [Convert Measurement]
button to:

i. Read the number of bytes from the EditBox
edtBytes.

ii. Select the unit of measurement to convert bytes
to kilobytes.

iii. Call function Convert to do the conversion and
display the conversion answer.

IT-Practical-LB-Gr11.indb 152 2019/10/02 10:15

153TERM 3 I CHAPTER 6 USER-DEFINED METHODS I UNIT 6.4 Basic input validation techniques

CONSOLIDATION ACTIVITY Chapter 6: User-de� ned methods continued

QUESTION 2

2.1 Replace delimiters of a string with new delimiters.

Example:
Replace the space delimiters in a string with the delimiter ‘*’.
The string:
The fat cat jumps high.

Becomes:
The*fat*cat*jumps*high.

Open the ChangeDelimiter_p project in the 06 – Change Delimiter Folders and do the following:

a. Write a procedure ChangeDelimiters to accept a sentence, the current delimiter of the string and the
new delimiter of the sentence. Replace the current delimiter with the new delimiter. Display the original
sentence and the new sentence one below the other.

b. Write a procedure ReadFileData to read the data stored in the text fi le Sentences.txt and store the
values in an array arrSentences. You may assume that the text fi le may not contain more than 10
entries.

c. Create an OnClick event for the [ChangeDelimiters] button to:

i. Read the original delimiter and the new delimiter from the EditBoxes.

ii. Call procedure ReadFileData

iii. Call procedure ChangeDelimiters to change the original delimiter of the strings stored in
arrSentences with the new delimiter.

IT-Practical-LB-Gr11.indb 153 2019/10/02 10:15

154 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 6: User-de� ned methods continued

2.2 The Make 15 Puzzle is a game. In this game, you have nine boxes,
arranged in a three-by-three square. The goal of Make 15 is to enter
values into these boxes so that all the rows, columns and diagonals add
up to 15. The trick is that you are not allowed to use any number in the
range 1 to 9, more than once.

Open the Make15_p project in the 06 – Make15 Folder. You should see
the following user interface for your puzzle.

Note: the EditBoxes are named as shown in the image alongside.
EditBox Edt1 is therefore the EditBox in the top-left corner, while EditBox
edt9 is the EditBox in the bottom-right corner.

a. Write a function IsUnique that checks whether the 9 values entered
by the user are unique.

b. Write a function IsFifteen that accepts three integer parameters and
returns a String ‘True’ if the total of the three numbers is 15;
otherwise it returns the value ‘False’.

c. Create an OnClick event for the [Calculate] button to:

i. Store the values from entered in the EditBoxes edt1 to edt9 in
an array arrValues. The value of EditBox edt1 is stored in
arrvalues[1], the value of EditBox edt2 is stored in arrValues[2]
and so on.

ii. Call the isUnique function to check whether the values entered
are unique values. If the values are not unique, display an
appropriate message. If the values are unique, then call the
isFifteen function and pass three values of the fi rst row that is the fi rst three elements of the array
arrValues. Assign the return value of function isFifteen to the label next to the fi rst row. Call the
isFifteen fuction for the other rows, columns and diagonals. Determine whether a user won or not
and display the message in the message label.

Save and test your application.

IT-Practical-LB-Gr11.indb 154 2019/10/02 10:15

155TERM 4 I CHAPTER 7 USER INTERFACES

TERM 4

CHAPTER

7USER INTERFACES

CHAPTER UNITS

Unit 7.1 Multi-form user interface

Unit 7.2 Dynamic instantiation of objects

 Learning outcomes

At the end of this chapter you should be able to:
● describe the basics of human-computer interaction
● use the Hide and Show methods with components
● dynamically instantiate a passive component
● dynamically instantiate an active component
● add an event to a dynamically instantiated component
● use more than one form
● pass data between forms.

INTRODUCTION

In Grade 10, you learned how to analyse user interfaces. A big part of this exercise
was recording all the screens the application uses and understanding how to
navigate between these screens.

Up to now all your applications have used a single screen. While this has worked
thus far, there are serious drawbacks to creating single-screen applications:
● It limits the number of components you can use in your program.
● It limits the overall scope and size of your program.
● User interfaces can quickly become confusing.

In this chapter, you will learn how to add additional screens (or forms) to your
application. This will allow you to create simpler, easier to use user interfaces that
group similar functions on the same screen. You will also learn how to dynamically
add elements to your screens. This means that components like labels, images
and textboxes can be created using code. By the end of the chapter you should
be comfortable using both techniques, as both these techniques are critical in
creating professional applications.

IT-Practical-LB-Gr11.indb 155 2019/10/02 10:15

156 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

7.1

Multi-form user interfaces will only be tested in your practical assessment task (PAT) and not in your
exams. To create a multi-form (or multi-screen) user interface, you need to follow three steps. These are:
● creating a second form
● moving between the forms
● passing data between the forms.

 ADDING AND ACCESSING A NEW FORM IN AN EXISTING PROJECT
You can add another form to your current project. Each form is an
independent application that can run on its own.

Guided activity 7.1

Follow the steps below to add a form to an existing project.

Step 1: Open the existing project FormSwapper_p project in the 07 – Form Swapper Folder

Step 2: To add an additional form to the current project,
go to the Project Manager panel. Remember that the
project manager is found above the Tool Palette.

Step 3: The new form will now be added to the project
and will be shown in the project manager. The default
name of the new form is Unit2.pas.

• Right click on the
project name

• Click on Add New
• Click on Form

The new form is added and
shown as Unit2.pas.

New words

independent – to run on
its own

Multi-form user interfaces

 UNIT

IT-Practical-LB-Gr11.indb 156 2019/10/02 10:15

157TERM 4 I CHAPTER 7 USER INTERFACES I UNIT 7.1 Multi-form user interfaces

Guided activity 7.1 continued

Step 4: The new form must now be saved. To save the new form:

● Click on File and select Save.
● The Save File DialogBox appears.
● Navigate to the project folder 07 – Form Swapper and open the project folder. Type the

name of the new form GreenForm_u.
● Click Save.
● The new form is now part of the project.

Step 5: You can now open any one of the forms using the Project Manager panel. Click on
the form that you need to open. The opened form displays in its own tab in the form section
of the Delphi interface.

• Each open form is shown in its own tab.
• Two forms are open, FormSwapper_U and GreenForm_U.
• Currently the FormSwapper_U is selected and displayed.
• To switch between the forms, click on the form’s tab.

IT-Practical-LB-Gr11.indb 157 2019/10/02 10:15

158 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 7.1 continued

Step 6: Make the following changes to
the GreenForm_u form:

● Change the form caption to
Green Form.

● Change the Color property to clLime.
● Add a label lblMessage with the

caption GREEN FORM.
● Add a button btnClose.

Step 7: Moving between the forms:

● Select the FormSwapper_u tab.
● In order to access the GreenForm_u from the FormSwapper_u form, you need to add

the name of the green form in the uses section of the FormSwapper_u form as follows:
 Create an OnClick event for the [Move to Green Form] button and add the following

code:

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, GreenForm_U;
procedure TfrmYellow.btnNewScreenClick(Sender: TObject);
begin
 frmGreen.Show;
 frmYellow.Hide;
end;

Step 8: Adding code to the GreenForm_u form:

● Create an OnClick event for the [Close] button and add the code:

procedure TfrmGreen.btnCloseClick(Sender: TObject);
begin
 frmGreen.Close; // OR self.close;
end;

Note:

The CLOSE method of a form closes any specifi ed form. You can therefore close any
form that is opened. The form closes not the application.

The statement:

 Application.Terminate;

terminates the entire program.

The statement:

 Self.close;

closes the current form.

Step 9: Save and run the project. The FormSwapper_u form is set as the main form and will
therefore display fi rst when the program is executed. We will look at changing the main form
to another form later on.

IT-Practical-LB-Gr11.indb 158 2019/10/02 10:15

159TERM 4 I CHAPTER 7 USER INTERFACES I UNIT 7.1 Multi-form user interfaces

SHARING DATA BETWEEN FORMS
Data can be shared between two forms in different ways:
● By including the name of the new unit in the USES section of the main form,

you can access all variables added to the PUBLIC section of the new unit.
● By including the name of the unit in the USES section of the main form, you

can access the properties of its components through the form object
(Example : frmSignUp.lblName.Text).

● By sharing data between forms using text � les.
● By sharing data between forms using a database.

In most situations, you will use the � rst or second option to share data between
forms.

Activity 7.1

A text fi le Users.txt stores the information of all users of FriendBook in the following format:

 name,age,email,password

Here is an example of data in the text fi le:

Vijay,100,vakarianknight@outlook.com,Alien

Arhaan,14,arhaan@gmail.com,Tookols

Rayan,29,rayan@gmail.com,Secret

Rachael,45,rachael@yahoo.com,45#Pc

7.1.1 Open the FriendBook_p project in the 07 – FriendBook Folder and do the following:

a. Add a new form FriendBookLogin_u to the FriendBook_p project.

b. Add components to the FriendBookLogin_u form as shown below:

Did you know

When using two forms, you
cannot add both forms to
each other’s USES section.
This creates a circular
dependency that will
cause the application to
crash. Instead, you have to
choose a parent form
(typically your fi rst form)
and place the child form’s
name in its USES section.

New words

circular dependency –
to cause an application
to crash

IT-Practical-LB-Gr11.indb 159 2019/10/02 10:15

160 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity 7.1 continued

7.1.2 The FriendBook logo is found in the project folder.

a. Write an OnClick event for the [Login] button to read the email and password
from the EditBoxes and look for a match of the email address and password in
the Users.txt text fi le. If a match is found then display a message ‘Match
found – you are logged in’. If no match is found then display the message
‘No match found’.

b. Create an OnClick event for the label that contains the text ‘sign up’ to display
the Sign in screen.

7.1.3 The FriendBookSignUp_u form is used to sign up friends for FriendBook.
Do the following:

a. Create an OnClick event for the [Sign Up] button to read the information for the
name, age, email, password and confi rm password from the EditBoxes. Check if
the password and confi rm password data match. If the password and confi rm
password matches, write the name, age, email and password to the User.txt
text fi le in the required format. If the password and confi rm password data does
not match, then display an appropriate message.

b. Create an OnClick event for the label that contains the text ‘Click here to return
to the Login Form’ that will display the Login screen.

SETTING THE MAIN FORM
When you create a project, the initial form created is the Main form. This means
that every time you run the program this form will execute � rst. When you are
working with multiple forms, you may want to set the main form to another form.

IT-Practical-LB-Gr11.indb 160 2019/10/02 10:15

161TERM 4 I CHAPTER 7 USER INTERFACES I UNIT 7.1 Multi-form user interfaces

To do this:
1. In the Project Manager panel, right-click on the name of the project and

select Options from the drop down list.

2. The Project Options DialogBox is displayed.

Click on Forms

3. Select the form that you want to set as the main form from the main form
drop down list.

Activity 7.2

7.2.1 Open the ChangeMainForm_p project in the 07 – Change Main Form Folder.
Change the main form to frmLogin.

7.2.2 Save and run the project.

IT-Practical-LB-Gr11.indb 161 2019/10/02 10:15

162 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Up until now you have created a user interface and then coded using the
user interface. In many situations the user interface will not always remain
the same, such as in the the case of a game. In a game the user interface
changes as the game progresses. The programmer may create
characters, obstacles and enemies. When a component or object is
created during run-time we refer to this as dynamic instantiation

of objects.

V ISUAL COMPONENTS
In Delphi, all components can be created using the Create method of their class. To dynamically create a
label component, we need to declare the name of the label as a variable:

…
var
 frmMain: TfrmMain;
 lblMessage: TLabel;
implementation
....

Instantiation of the label component object

The label is created by calling the Create method of the TLabel class.

lblMessage := TLabel.Create(Self); OR lblMessage := TLabel.Create(frmMain);

Set the properties for the label

The TWO required properties are the Parent and Caption property.

 lblMessage.Parent := Self; OR lblMessage.Parent := frmMain;
 lblMessage.Caption := ‘Hello, World!’;

You can set other properties of label as is required using programming code such as:

lblMessage.Parent := Self;
lblMessage.Text := 'Hello, World!';
lblMessage.Left := 100;
lblMessage.Top := 100;
lblMessage.Width := 100;
lblMessage.Height := 20;

You can create any component in a similar manner as you did for the label component. In order to assign
values to the component properties, you need to know the names of the most important properties.

TLabel refers to the name of the class of a label

Name of the label variable

The label is a child of the form
frmMain.

Self refers to the frmMain form.
It is also parent.

The label belongs to the frmMain form. Form
frmMain is referred to as a parent of the label.

Dynamic instantiation of objects

New words

dynamic instantiation –
when a component or
object is created during
run-time

7.2

U NIT

IT-Practical-LB-Gr11.indb 162 2019/10/02 10:15

163TERM 4 I CHAPTER 7 USER INTERFACES I UNIT 7.2 Dynamic instantiation of objects

The table below lists these properties.

PROPERTY COMPONENTS PARAMETERS DESCRIPTION

Parent All Form All components must be assigned to a parent form. This is
done by assigning the value ‘Self’ to the Parent property.

Left All Integer The number of pixels the component is moved from the left
of the form.

Top All Integer The number of pixels the component is moved from the top
of the form.

Width All Integer The width of the component in pixels.

Height All Integer The height of the component in pixels.

Text Edit String The text shown by text boxes.

Caption Button, Label String The text shown by buttons and labels.

Bitmap.
CreateFromFile

Image String A string of the fi le path of the image that will be displayed.

Items.Add ListBox, Memo String The string that will be shown on one row of a ListBox or
memo.

To see how this is done, work through the following example.

Example 7.1 Rainbow boxes

For this project, you will create an application that creates rainbow coloured boxes every time you click on the
[Create Box Option] button:

To do this:

1. Create a new project RainbowBoxes_p project and save it in a folder named 07 – Rainbow Boxes.

2. Create the following user interface.

3. Add the unit ExtCtrls to the USES section of your program. This will allow you to dynamically create the TShape
component.

4. Declare the following two global variables.

i : Integer = 0;
shpDynamicBox: TShape;

The integer variable I is declared and initialised at the same time. This type of declaration can only be done with
global variables. The variable I is assigned the value 0.

 i: integer = 0;

The variable shpDynamicBox, is a TShape variable. The TShape variable was chosen since it has a Brush.Color
property which accepts a colour variable. You will use this property to change the colour of the boxes.

IT-Practical-LB-Gr11.indb 163 2019/10/02 10:15

164 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 7.1 Rainbow boxes continued

5. Create an OnClick event for the [Create a box] button and do the following:

Instantiate the shape object shpDynamicBox.
Set the properties of the newly created shpDynamicBox component as follows:

PROPERTY VALUE

Parent Self

Height & Width 80

Top 50

Left 12 + i*80

While most of this code sets static properties for the rectangle, the Left property increases by 80 with each new
box. The calculation for the Left property ensures that each time the value of variable I increases, the next box
will be placed 80 pixels further to the right. The different boxes will be placed next to each other rather than on
top of each other.

6. Create the following CASE statement to set the colour of the box based on the value of variable I.

Colour elements
Case i of
 0 : shpDynamicBox.Brush.Color := clRed;
 1 : shpDynamicBox.Brush.Color := $000080FF;
 2 : shpDynamicBox.Brush.Color := clYellow;
 3 : shpDynamicBox.Brush.Color := clGreen;
 4 : shpDynamicBox.Brush.Color := clBlue;
 5 : shpDynamicBox.Brush.Color := clPurple;
 6 : shpDynamicBox.Brush.Color := clFuchsia;
end;

7. Set the Name property of the box equal to the text shpBox followed by the value of variable I. This name could
be used to change a box’s properties at a later time.

Example:

shpDynamicBox.Name := 'shpBox' + IntToStr(I);

8. Finally increase the value of variable I by 1.

9. Save and run your project.

Code for the OnClick CreateABox procedure
procedure TfrmRainbowBoxes.btnCreateABoxClick(Sender: TObject);
begin
 shpDynamicBox := TShape.Create(Self);
 shpDynamicBox.Parent := Self;
 shpDynamicBox.Height := 80;
 shpDynamicBox.Width := 80;
 shpDynamicBox.Top := 50;
 shpDynamicBox.Left := 12 + I * 80;
 Case i of
 0 : shpDynamicBox.Brush.Color := clRed;
 1 : shpDynamicBox.Brush.Color := $000080FF;
 2 : shpDynamicBox.Brush.Color := clYellow;
 3 : shpDynamicBox.Brush.Color := clGreen;
 4 : shpDynamicBox.Brush.Color := clBlue;
 5 : shpDynamicBox.Brush.Color := clPurple;
 6 : shpDynamicBox.Brush.Color := clFuchsia;
 end;
 shpDynamicBox.Name := 'shpBox' + IntToStr(I);
 I := I + 1;
end;

IT-Practical-LB-Gr11.indb 164 2019/10/02 10:15

165TERM 4 I CHAPTER 7 USER INTERFACES I UNIT 7.2 Dynamic instantiation of objects

 INTERACTIVE COMPONENTS
Creating an interactive component with an event (such as an OnClick, OnChange or OnTimer event), can
be done in seven steps:
● Step 1: Declare the component variable.
● Step 2: Create the component and assign it to the variable.
● Step 3: Set the component properties.
● Step 4: Declare the name of a custom procedure in the Public section of your form.
● Step 5: Add the (Sender: TObject) parameter to the procedure’s name.
● Step 6: Create the custom procedure for your event in the code.
● Step 7: Assign the name of the procedure to the appropriate event property.

CREATING A BUTTON WITH AN ONCLICK EVENT
The � rst three steps of this procedure are identical to those of visual components:
● Step 1: Declare the component variable.
● Step 2: Create the component and assign it to the variable.
● Step 3: Set the component properties.

In the next four steps you will create a button interactive component with an OnClick event:
● Step 4: Declare the name of the custom procedure that you want to link your button or timer to in

the Public section.

type
 TfrmMain = class (TForm)
 private
 { Private declarations }
 public
 procedure ButtonClick (Sender: TObject);
 { Public declarations }
 end;

● Step 5: When you have multiple buttons activating the same procedure, the Sender parameter
allows your form to understand which button was clicked to activate the procedure.

● Step 6: The second last step is to create your custom procedure (technically, your form method).
This can be done in the same way as all the custom procedures you created in Chapter 6.
The code below shows an example of the ButtonClick form procedure.

Dynamic OnClick method
procedure TfrmMain.ButtonClick(Sender: TObject);
begin
 ShowMessage('Hello, Button!');
end;

This procedure should also include the Sender parameter.

● Step 7: Finally, the method name (excluding the TfrmMain part) can be assigned to the appropriate
event property where the button is created. The method above can be assigned to the dynamic
button as follows:

btnDynamic := TButton.Create(Self);
btnDynamic.Parent := Self;
btnDynamic.Text := 'Click me!';
btnDynamic.Left := 10;
btnDynamic.Top := 10;
btnDynamic.OnClick := ButtonClick;

TObject parameter called Sender. This parameter contains
the object (button in this case) that called the procedure.

Custom procedure ButtonClick has been declared.
The procedure becomes a method of the form object.

Event name OnClick. ButtonClick method assigned to button’s btnDynamic OnCLick property.

IT-Practical-LB-Gr11.indb 165 2019/10/02 10:15

166 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CREATING TIMERS WITH AN ONTIMER EVENT
Timers are created in roughly the same way as a button, with only two differences:
● the timer must be enabled.
● an appropriate interval must be set.

The form method must be assigned to the OnTimer event.

Activity 7.3 Dynamic components

Open the DynamicComponent_p project in the 07 – Dynamic Components Folder. You
should see the following user interface.

7.3.1 Create an OnClick event for the [Create a Button] button to do the following:

a. Each time the [Create a Button] button is clicked, it creates a new button and
displays a message as shown below:

b. Save and run the project.

IT-Practical-LB-Gr11.indb 166 2019/10/02 10:15

167TERM 4 I CHAPTER 8 DATABASES

TERM 4

CHAPTER

8DATABASES

CHAPTER UNITS

Unit 8.1 Creating a database

Unit 8.2 Connecting to a database

Unit 8.3 Reading data from a database

Unit 8.4 Writing data to a database

Unit 8.5 Manipulating data

 Learning outcomes

At the end of this chapter you should be able to
● create a simple database using Microsoft Access
● create a connection to a database using Delphi
● use a data module to connect to a database
● display the data from a database in Delphi
● access � elds and records within a database
● select appropriate records using Delphi components or code
● modify values in a database using Delphi code
● manipulate database records using code
● use algorithms when working with databases
● � lter a database using code with criteria.

INTRODUCTION

Databases play a critical role in permanently storing data in applications. Whether
it is a music library in a media player, the graphics and dialogue for a game, or a
user’s settings in an application, databases provide a structured, logical method
to store data. In this chapter, you will learn how databases can be used in Delphi
applications. The information stored in the database will be accessed and
manipulated via programming code. The focus will be on connecting to the
database, obtaining the data and using the data in your application.

IT-Practical-LB-Gr11.indb 167 2019/10/02 10:15

168 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

8.1

In Chapter 7 of the Grade 11 IT Theory textbook, you learned how to create a database. The example
below will very brie� y take you through the process of creating the simple, single-table database that will
be used in the FriendBook application you created in Activity 7.1 on page 159.

FRIENDBOOK DATABASE STRUCTURE
The structure below stores information about your friends in a single-table database with the following
� elds:

FIELD NAME DATA TYPE PURPOSE

Surname ShortText Stores user surname

FirstNames ShortText Stores user’s � rst name(s)

DateOfBirth Date/Time Stores user’s Date of Birth

Class ShortText Stores user’s Grade/Division

Pro� leViews Integer Stores number of times a user’s pro� le has been viewed

Bio ShortText Stores a short description of the user

Example 8.1 Creating a database for FriendBook

To create an Access database:
1. Open the Start Menu and type ‘Access’.

2. Click on the Access application to open it.

3. Double click on Blank desktop database option in the main window.

4. Click on the Open icon next to the File Name text box.

5. In the New Database window that opens, select an appropriate folder to save your database and click OK.

6. Select Microsoft Access Database (2002-2003) in the Save as type drop down list.

7. Enter the name FriendbookDB.mdb in the File name text box at the bottom of the File New Database window.

8. Click OK to close the window, then click on the [Create] button to create the database.

9. Find the Table1 table in the All Access Objects panel on the left side of Access.

Creating a database

UNIT

IT-Practical-LB-Gr11.indb 168 2019/10/02 10:15

169TERM 4 I CHAPTER 8 DATABASES I UNIT 8.1 Creating a database

Example 8.1 Creating a database for FriendBook continued

10. Click on the Home tab in the ribbon. Click on View and choose Design View.

You will be prompted to name and save your table.

11. Enter the name tblFriends for the table and press Enter.

Table1 will be renamed to tblFriends.

The table opens in Design View.

Field Properties

Description of the type
of data the � eld holds.
The description makes
it possible for any
programmer to make use of
the database as it explains
what the � elds represent.

Indicates the
Primary Key

For programming
purposes: we will use
naming conventions
of variables, excluding
the data type pre� x.

Data Type of the � eld.
To access other data
types, click on the
drop down list.

Access will add a � eld named ID to your table automatically. ID is of type
AutoNumber. This data type can be used to automatically generate a
unique primary key for each record in numerical order starting from 1.
Since this is our � rst database, we will use the AutoNumber as our primary
key, however, in future databases, we will create a primary key manually.

Note:

● When generating Autonumbers, the computer always remembers the
last Autonumber generated and adds 1 to it. For instance, if there are
15 records in a table and you delete the 15th record, when you add a
new record, the Autonumber generated will be 16.

Did you know

Remember to save your
work regularly. The easiest
way to save a database in
Access is to press the
CTRL + S hotkey.

IT-Practical-LB-Gr11.indb 169 2019/10/02 10:15

170 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 8.1 Creating a database for FriendBook continued

Adding Fields to a Table

Once you have created your table, you can create the � elds that will be used in your application and later on, data
will be added to these � elds.

To do this:

1. Type the � eld name Surname as your � rst � eld.

2. Select the Short Text option as the data type.

3. In the Field Properties options, set a Field Size for Surname. It defaults to 255, but since surnames would not
take up that many characters, it is in good design principles to set a smaller size. In the example below the size
is set to 40.

4. Add a second � eld of type Short Text called FirstNames. Set the � eld size, as necessary.

5. Add the remaining � elds for tblFriends, choosing the appropriate data types and setting the Field Sizes, if
necessary.

6. When all the � elds have been added, Save changes to the database.

IT-Practical-LB-Gr11.indb 170 2019/10/02 10:15

171TERM 4 I CHAPTER 8 DATABASES I UNIT 8.1 Creating a database

Example 8.1 Creating a database for FriendBook continued

Adding Records to the table

1. Click on Home, View, DataSheet View. This will take you to DataSheet View.

2. In Datasheet View, enter the details for at least � ve friends:

a. The ID � eld will be automatically generated.

b. Fill in the friend’s surname and � rst names.

c. Select the DateofBirth using the DateTimerPicker component.

d. Type in the friend’s Grade and Division in the � eld Class.

e. For Pro� leViews, initialise the � eld to 0.

f. In the � eld Bio, type a short description about the friend.

3. Add records until you have at least � ve records in your table, then save the database.

4. With the database table and a few records created, you are ready to start using your database in an application.
Save changes to your database.

Activity 8.1

Create Microsoft Access databases and add at least � ve records to the tables in the database.

Appropriate � eld names and data types should be used.

8.1.1 A database called ContactsDB which stores information about your friends in tblInfo. Fields to store the
following data should be created:

a. Name

b. Surname

c. Age

d. Phone number

e. E-mail address

f. Last date spoken

8.1.2 A database called ShopsDB which stores information about a variety of different online or physical shops that
you use in tblShops. Fields to store the following data should be created:

a. Name

b. Physical address

c. Web address

d. Type (e.g. electronics, clothes, fast food, groceries)

e. Number of times you have used them

f. Last time you used them

IT-Practical-LB-Gr11.indb 171 2019/10/02 10:15

172 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

The � rst step to using a database in your application is to create a connection between your application
and the database. To do this, you will use the following invisible components:
● TADOConnection: As the name suggests, the TADOConnection component is used to create a

connection to an external database.
● TADOTable: The TADOTable component uses the database connection to connect to a speci� c

table inside your database.
● TDataSource: The TDataSource component creates a connection between your database table(s)

and the Delphi components. A DataSource can contain data from an entire table, a part of a table or
data from several tables combined.

In our FriendBook example, we would diagrammatically represent the connection as shown below:

FriendBookDB ADOConnection

ADOTable

DataSource Data Aware Component
(Example: dbGrid)

Figure 8.1: The connection between your application and the database

The � rst two components can be found from the dbGo list in RAD Studio’s Tool Palette, while the
TDataSource component can be found in the Data Access list of the Tool Palette.

Figure 8.2: The dbGo list from the Tool Palette

While these components can be added directly to your form, this links them to a speci� c form, making it
harder to use the database in a multi-form application. Use of multiple forms is necessary for your PAT, so
it is better to put our database connection components into a data module that we can share across
forms. The database connection components can be added to a new type of unit called a data module.
The example below shows how a data module can be created and used in a project.

New words

data module – a sealed,
removable storage module
containing magnetic disks
and their associated access
arms and read/write heads

Connecting to a database8.2

UNIT

IT-Practical-LB-Gr11.indb 172 2019/10/02 10:15

173TERM 4 I CHAPTER 8 DATABASES I UNIT 8.2 Connecting to a database

ADDING A DATA MODULE

Example 8.2 Adding a data module to your project

Open the FriendBook_p project from the 08 – FriendBook_1 Folder.

1. In the Project Manager panel in the top right corner of the screen, right click on the FriendBook_p.exe project.

2. Select the Add New option and click on Other. A New Items window should now open.

3. Inside the New Items window, select the Data Module option and click OK. This will add a new data module to
your project.

4. Save the data module in your project folder with the name conFriendBook.

5. Rename the data module form to dbmFB.

6. Select your main form and open the Code screen.

7. Add conFriendBook to the Uses section of your main form’s code. Save and close your project.

unit FriendBook_u

interface

uses
 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms, Dialogs, ComCtrls, StdCtrls, Keyboard, ExtCtrls, Grids,
DBGrids, conFriendBook;

By adding the conFriendBook data module to a form, you gain access to any database connections created inside
the data module. By separating the database connections from any form, you can import the database into each
form through the Uses section.

IT-Practical-LB-Gr11.indb 173 2019/10/02 10:15

174 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

ADDING DATABASE CONNECTION COMPONENTS
Once you have created the data module, there are two methods of connecting to a database that we
will discuss:
● Method 1: Connection via Connection Wizard (Object Inspector)
● Method 2: Connection via Dynamic Connection (Code)

METHOD 1: CONNECTION USING THE OBJECT INSPECTOR

Example 8.3 Adding the database connection components

Open your FriendBook_p project from the 08 – FriendBook_1 Folder and open the conFriendBook data module.

1. In the Tools Palette, open the dbGo list and drag a TADOConnection to the data module.

2. Rename the component to conFriendBookDB.

3. Change the connection’s LoginPrompt property to False.

4. Double click on the conFriendBookDB component in your data module. This will open the Connection String
window.

5. Click on the [Build] button.

6. In the Data Link Properties window, select the Microsoft Jet 4.0 OLE DB
Provider option and click Next.

7. In the Connection tab, click on the three dots button next to the Database
name textbox.

8. Using the Select Access Database screen, browse to your
FriendBookDB database.

9. Select the FriendBookDB.mdb database and click Open.

10. In the Connection tab of the Data Link Properties window, click
on the [Test Connection] button. You should receive a message
stating that the test connection succeeded.

Did you know

If the database is in the
same folder as your Delphi
project, you can simply
enter the database name
and � le extension in the
text box. This will allow the
application to work on any
computer, even if the
project is moved to a
different folder.

IT-Practical-LB-Gr11.indb 174 2019/10/02 10:15

175TERM 4 I CHAPTER 8 DATABASES I UNIT 8.2 Connecting to a database

Example 8.3 Adding the database connection components continued

11. Click OK, then click OK again in the ConnectionString window.

12. Change the Connected property of conFriendBookDB to True.

Congratulations! You have just connected your database to your Delphi project.

Connecting to a speci� c table

The next step is to use this connection to connect to a speci� c table and to make this table available in Delphi.

To do this:

1. From the dbGo list in the Tool Palette, drag a TADOTable component to your data module.

2. Rename the table component to tblFriends. Note that this is the same name we gave to our table when creating
it in Microsoft Access.

3. Click on the dropdown list next to the Connection property of your tblFriends component and select
conFriendBookDB.

4. Change the value of the TableName property to the name of the table you are connecting to (tblFriends). If your
connection was made correctly, you will be able to select the table from a dropdown list in the Object Inspector.

5. Change the table’s Active property to True.

6. From the Data Access list in the Tool Palette, drag a TDataSource component to your data module.

7. Rename the Data Source to dscFriends.
You should now have the following three
components on your data module:

IT-Practical-LB-Gr11.indb 175 2019/10/02 10:15

176 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 8.3 Adding the database connection components continued

8. Select your dscFriends component and set the value of its DataSet property to tblFriends.

9. Save and close your application.

You now have a connection between your Delphi project and the
tblFriends table in your Microsoft Access database.

METHOD 2: CONNECTION VIA CODE CONSTRUCT

Example 8.4 Connecting an Access database and your Delphi application using code construct

This method establishes a connection between the Access database and your Delphi application using code
construct. Since we are writing code to point the ADOConnection to the external database, we must � rst ensure that
our database resides in the same folder as our project.

Move your Access Database FriendBookDB.mdb to the 08 – FriendBook_2 Folder.

1. Open the FriendBook_p project from the 08 – FriendBook_2 Folder. This project has an empty DataModule
already created and saved.

2. Double click on conFriendBook.pas in the Project Manager to open the DataModule.

3. Since we are connecting the database using code, we do not need to add any components to the DataModule
from the Palette.

CONNECTING TO AN
ACCESS DATABASE

https://www.youtube.com/
watch?v=k8pGVnNH� E

IT-Practical-LB-Gr11.indb 176 2019/10/02 10:15

177TERM 4 I CHAPTER 8 DATABASES I UNIT 8.2 Connecting to a database

Example 8.4 Connecting an Access database and your Delphi application using code construct continued

4. Switch to Code view.

5. Under USES, add: ‘ADODB’ and ‘DB’.

uses
 SysUtils, Classes, ADODB, DB;

6. Declare the ADOConnection, ADOTable and DataSource under Public.

type
 TconFriendBookDB = class (TDataModule)
 private
 { Private declarations }
 public
 { Public declarations }
 conFriendBookDB: TADOTable;
 dscFriends: TDataSource;
 end;

7. Switch to Design view and create an OnCreate event for the DataModule.

8. In the OnCreate method, write the following code:

conFriendBookDB := TADOConnection.Create(dbmFB);
tblFriends := TADOTable.Create(dbmFB);
dscFriends := TDataSource.Create(dbmFB);

conFriendBookDB.Close;
conFriendBookDB.ConnectionString := 'Provider=Microsoft.Jet.
OLEDB.4.0;Data Source ='
+ ExtractFilePath(ParamStr(0)) + 'FriendBookDB.mdb' + ';
Persist Security Info = False';
conFriendBookDB.LoginPrompt := False;
conFriendBookDB.Open;

tblFriends.Connection := conFriendBookDB;
tblFriends.TableName := 'tblFriends';

dscFriends.DataSet := tblFriends;

tblFriends.Open;

9. Save and close your application.

You now have a dynamic connection between your Delphi project and the Microsoft Access database.

These lines instantiate the
Database component objects.

Opens the table, making it accessible to the application’s components

Connects the DataSource to the ADOTable to make it
accessible to Data-aware components in the GUI.

Sets up connection to speci� c table in
the Access database via the ADOTable.

Responsible for setting up
the ADOConnection and
pointing it to the Access
database. ExtractFilePath
locates the database � le
within the project folder.

IT-Practical-LB-Gr11.indb 177 2019/10/02 10:15

178 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Once a database connection has been made, you can start using and displaying the data in your
application.

DISPLAYING DATA ON A DBGRID
The DBGrid is a data-aware component because it is used to read data directly from a DataSource.

We will now use a DBGrid to display the contents of a database table in our Delphi application. The TDBGrid

component can be added from the Data Controls list in the Tool Palette.

Example 8.5 Creating the user interface

Open the FriendBook_p project in the 08 – FriendBook_3 Folder. The basic user-interface has already been built.
It is, however, missing an important component which you will have to add. To do this, the following basic user
interface has been provided:

1. In the Tool Palette, � nd the Data Controls list and drag a TDBGrid to your form.

Reading data from a database8.3

UNIT

IT-Practical-LB-Gr11.indb 178 2019/10/02 10:15

179TERM 4 I CHAPTER 8 DATABASES I UNIT 8.3 Reading data from a database

Example 8.5 Creating the user interface continued

2. Change the name property to dbgFriends and resize it as shown in the image below.

3. To display the data from your database, you need to connect dbgFriends to your datasource. To do this:

a. In the Design screen, create an OnShow event for the form.

b. In the OnShow event, write the following line to connect the DBGrid to DataSource in the DataModule.

dbgFriends.DataSource := dbmFB.dscFriends;

4. Save and test your application. You should now be able to see the records from your database on the
FriendBook form.

The only problem remaining with the user interface of the FriendBook form is that a few of the columns are too
wide. To solve this problem:

5. Navigate to the OnShow event for the form.

IT-Practical-LB-Gr11.indb 179 2019/10/02 10:15

180 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 8.5 Creating the user interface continued

6. Inside the OnShow event, add the following lines of code.

Column width
dbgFriends.Columns[0].Width := 30;
dbgFriends.Columns[1].Width := 80;
dbgFriends.Columns[2].Width := 120;

This code changes the width of the � rst 3 columns of dbgFriends.

7. Using similar code, set the width of the remaining columns to appropriate values.

8. Once done, save and test your application.

Congratulations, you have just linked a database to a grid in your application! By using this grid, you can not only
view the data from your database, but you can also change the data by clicking on any values and entering a
new value.

Activity 8.2

Both questions in this activity are based on the SoftDrink Application. This main form contains a DBGrid named
dbgSoftDrink. An OnShow event is already created, but no code has been written for it. A DataModule named
conSoftDrink has been created and saved to the project folder. The DataModule’s object name is dbmSoftDrink.
An OnCreate event is created for the data module.

The folder also contains a database named SoftDrinkDB.mdb that contains a single table named tblSoftDrink that has
been populated with several records.

8.1.1 Open project SoftDrinkApp_p from the 08 – SoftDrink_1 Folder.

Open the DataModule conSoftDrink. Your aim is to create a connection between SoftDrinkDB.mdb (The Access
database) and the Delphi project using the Connection Wizard (method 1).

a. Add the following components, renaming them as shown in the table:

COMPONENT NAME

ADOConnection conSoftDrinkDB

ADOTable tblSoftDrink

DataSource dscSoftDrink

b. Complete the necessary steps in using the Object Inspector to connect the data components to the external
database.

c. Link the DBGrid in the GUI to the DataSource, to make the table visible to the user.

d. Save and test your application.

IT-Practical-LB-Gr11.indb 180 2019/10/02 10:15

181TERM 4 I CHAPTER 8 DATABASES I UNIT 8.3 Reading data from a database

Activity 8.2 continued

8.1.2 Open project SoftDrinkApp_p in the 08 – SoftDrink_2 Folder.

a. Open the DataModule conSoftDrink.

Your aim is to create a connection between SoftDrinkDB.mdb (The Access database) and the Delphi project
using code construct (method 2).

b. Add ADODB and DB to the USES section of the DataModule.

Declare the following components under Public in the DataModule:

public
 conSoftDrinkDB : TADOConnection;
 tblSoftDrink : TADOTable;
 dscSoftDrink : TDataSource;

c. Write the necessary code in the OnCreate event to instantiate and connect the data components to the
external database.

d. Write the necessary code in the OnShow event in the main form to connect the DBGrid to the DataSource.

e. Save and test your application.

IT-Practical-LB-Gr11.indb 181 2019/10/02 10:15

182 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

In this unit, you will learn about two different ways to write data to a database.

Methods used to create a new record in a Database table:

METHOD DESCRIPTION EXAMPLE

Append Creates an empty record at the end of a database table
and selects it, allowing you to add values to the record.

tblFriends.Append;

Insert Creates an empty record at the current position in a
database table and selects it, allowing you to add values to
the record.

tblFriends.Insert;

Post Saves all the changes you have made to records. Without
running this command, all changes will be discarded when
the application is closed.

tblFriends.Post;

The append method adds an empty row to the end of your database table. The insert method adds an
empty row at the current position of your database table. This means that if the pointer is at position 3, the
new record will be inserted at position 3. The existing records from 3 onwards will be moved down
accordingly: for example, record 3 will become record 4.

Once this new row has been created (using either append or insert), you can then set the values in this
row, much like how you would change the values of a variable. For example, to set the values of the
Surname and FirstNames � elds in your tblFriends table, you can use the following syntax.

Adding values to database � elds
tblFriends.Append;
tblFriends[‘Surname’] := ‘Goolam’;
tblFriends[‘FirstNames’] := ‘Noorjahan’;
tblFriends.Post;

Looking at the syntax, after the append method, you use the table name
followed by the name of the � eld (as a string in square brackets). You then
use the assignment statement (:=) to set the value of the � eld. Once you
have added values for all the � elds, you use the post command to
permanently save the values to the database table.

To see how this is used in practice, work through the following example.

Example 8.6 Adding records to a table

To add a record to a table:

1. Open the FriendBook_p project in the 08 – FriendBook_3 Folder

2. Create an OnClick event for the [Create Pro� le] button.

New words

insert – to add an empty
row at the current position
of your database table

append – to add an empty
row to the end of your
database table

post command – to
permanently save the values
to the database table

Writing data to a database8.4

UNIT

IT-Practical-LB-Gr11.indb 182 2019/10/02 10:15

183TERM 4 I CHAPTER 8 DATABASES I UNIT 8.4 Writing data to a database

Example 8.6 Adding records to a table continued

3. Use InputBox dialogs to get input to allow a new user to sign up for FriendBook.

procedure TfrmAddCards.btnAddCardClick(Sender: TObject);
begin
 dbmFB.tblFriends.Append;

 dbmFB.tblFriends['Surname'] := InputBox('FriendBook',
 'Enter your surname', '');
 dbmFB.tblFriends['FirstNames'] :=
InputBox('FriendBook', 'Enter your fi rst names', '');
 dbmFB.tblFriends['Class'] := InputBox('FriendBook',
 'Enter your Grade/Division', '');
 dbmFB.tblFriends['Profi leViews'] := 0;
 dbmFB.tblFriends['DateOfBirth'] := Date;
 dbmFB.tblFriends['Bio'] := '';

 dbmFB.tblFriends.Post;

 showMessage('Congratulations! You''re registered.
Login to complete your profi le.');
end;

Note:

● Since tblFriends is an object on the data module, you need to � rst refer to dbmFB whenever you want to access
the table.

● Some � elds were set to Default values (such as DateOfBirth) and will be updated when we learn how to display
and edit data.

In order to maintain Data Integrity, we normally validate input data before writing it to the database. This code does
not include validation; however, it is important to note that professional applications protect data integrity by using
validation techniques.

Adds a blank row at the end of
the table

Values set from user input

Fields initialised with default
values

Writes new record to the table
in the database on the storage
medium

IT-Practical-LB-Gr11.indb 183 2019/10/02 10:15

184 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

THE WITH KEYWORD
Since our data components reside within the DataModule (dbmFB), we have to reference it whenever we
interact with our database table. In larger applications, referencing the DataModule repetitively can
become cumbersome.

Delphi includes a structure called WITH that enables us to reference a component or variable once and
then avoid having to repeat this reference within the WITH block of code.

Example 8.7 Display the user’s Surname, First Names and Class using DialogBoxes

METHOD 1: Using the DataModule reference in every line:

showMessage(dbmFB.tblFriends['Surname']);
showMessage(dbmFB.tblFriends['FirstNames']);
showMessage(dbmFB.tblFriends['Class']);

METHOD 2: Using the WITH command

WITH dbmFB DO
Begin
 showMessage(tblFriends['Surname']);
 showMessage(tblFriends['FirstNames']);
 showMessage(tblFriends['Class']);
End;

Using the WITH command is not compulsory but can make larger blocks of code more readable. Whether
you use it or not depends on your programming style.

DISPLAYING AND UPDATING DATA
We can extract data from a speci� c � eld of a selected record and display this data in a component that
makes reading and editing easier for the user.

Guided activity 8.1

8.1.1 Click on the DBGrid dbgFriends.

8.1.2 Create a OnCellClick event.

8.1.3 Write the following code in the event:

lblName.Caption := dbmFB.tblFriends['FirstNames'] + ' ' + dbmFB.
tblFriends['Surname'];
memBio.Text := dbmFB.tblFriends['Bio'];
dtpBirthday.Date := dbmFB.tblFriends['DateOfBirth'];
edtClass.Text := dbmFB.tblFriends['Class'];
edtProfi leViews.Text := dbmFB.tblFriends['Profi leViews'];

This code extracts data from
the database table and displays
it in standard Input/Output
components such as EditBoxes.

IT-Practical-LB-Gr11.indb 184 2019/10/02 10:15

185TERM 4 I CHAPTER 8 DATABASES I UNIT 8.4 Writing data to a database

Guided activity 8.1 continued

8.1.4 When the user clicks on a pro� le in the DBGrid, the application will transfer the selected user’s details to the
individual components below.

Editing an existing record

Now that we have the data available in standard input components such as EditBoxes, we can read changes the user
may effect into these components and then update the captured data.

8.1.5 Create an OnClick event for the button [Update Pro� le].

8.1.6 First we must set our ADOTable into Edit mode.

dbmFB.tblFriends.Edit;

8.1.7 Next, we transfer data from our Input components into the table.

dbmFB.tblFriends['Bio'] := memBio.Text;
dbmFB.tblFriends['DateOfBirth'] := dtpBirthday.Date;
dbmFB.tblFriends['Class'] := edtClass.Text;

8.1.8 Finally, we write the changes to the database.

dbmFB.tblFriends.Post;
showMessage('Profi le updated');

This code transfers data
from the Input Components
to the Database table

IT-Practical-LB-Gr11.indb 185 2019/10/02 10:15

186 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

MODIFYING FIELDS AUTOMATICALLY
It is sometimes necessary to update a � eld’s value automatically. In our example, the � eld Pro� leViews

counts the number of times a user’s pro� le has been viewed. Therefore it should automatically increase by
1 every time a user’s pro� le is clicked on.

Example 8.8 Modifying � elds automatically

1. Navigate to the dbgFriendsCellClick event.

2. Each time a pro� le is clicked, we will increment the record’s Pro� leViews value.

3. Add the following code to achieve this:

dbmFB.tblFriends.Edit;
dbmFB.tblFriends['Profi leViews'] := dbmFB.tblFriends['Profi leViews'] + 1;
dbmFB.tblFriends.Post;
edtProfi leViews.Text := dbmFB.tblFriends['Profi leViews'];

4. Now, whenever the user clicks on a record in the DBGrid, the Pro� leViews value will increment automatically.

Deleting a current record from a table

An important feature in a Database application is the ability to remove a record from a table.

While it is not compulsory, it is considered good design to ask the user to con� rm their action before deleting data
from a database table.

For con� rmation, we usually use a MessageDlg DialogBox.

1. Create an OnClick event for the [Delete Pro� le] button.

2. Add the following code to the event:

 if MessageDlg('Are you sure?' , mtConfi rmation, mbYesNo, 0) = mrYes then
 begin
 dbmFB.tblFriends.Delete;
 showMessage('Record deleted');
 end
 else
 begin
 showMessage('Delete cancelled');
 end;

Note:

● The MessageDlg is a function which has four parameters:
 The message, which is of type String
 The message type, which begins with mt
 The message buttons, which begins with mb
 The last parameter is the Help Context, to which we usually send 0.

● The function returns an Integer value depending on which button the user clicks. You can use the Message
Response constants (beginning with mr) to check which response was clicked.

● When coding the MessageDlg, you can type the � rst two letters (mt, mb, mr) and press Ctrl + Space to see a
list of available options for each parameter.

MessageDlg is a customisable
DialogBox that allows us to specify its
type (mt), the available buttons (mb)
and a customised message to the user

The user’s response is gauged
based on a response constant
which begins with mr (Message
Response). In this case, if the
user clicks Yes, we will proceed
with deleting the record.

Permanently deletes
the selected record

If the user clicks No (mrNo)

IT-Practical-LB-Gr11.indb 186 2019/10/02 10:15

187TERM 4 I CHAPTER 8 DATABASES I UNIT 8.4 Writing data to a database

Example 8.8 Modifying � elds automatically continued

IT-Practical-LB-Gr11.indb 187 2019/10/02 10:15

188 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Once we have established a connection to a database table, we can write code to perform a variety of
processing tasks to turn the extracted data into useful information.

When we process data from a database, we follow a similar pattern to processing data from a text � le.
● You start by selecting the � rst record (or line) of the database table.
● Next, you create a WHILE-Do-loop that runs until you reach the end of � le
● Inside the loop, you read the � elds you are looking for and store the data in variables.
● Using these values, you complete any processing needed by your application.
● You then move to the next record and repeat the process.

BASIC STRUCTURE WHEN MANIPULATING DATA

PSEUDOCODE
Move one pointer to the fi rst Record
Loop While NOT at end of table
Begin Loop
 Read data from table
 Process data from table
 Move to next record
End Loop

DELPHI CODE
tblDams.First;
while NOT tblDams.EOF do
begin
 …
 …
 tblDams.Next;
end;

The table below shows the table methods that allow you to step through your database.

METHOD DESCRIPTION EXAMPLE

First Navigates to the � rst record in the table.
tblDams.First

Next Moves to the next record in the table.
tblDams.Next

Prior Moves to the previous record in the table
tblDams.Prior

Last Moves to the last record in the table
tblDams.Last

Eof Returns TRUE if the pointer (iterator) is at the end of a
database table. Otherwise returns FALSE.

tblDams.EOF

RecordCount Function that returns the number of records in a
Database table.

tblFriends.Post;

Manipulating data8.5

UNIT

IT-Practical-LB-Gr11.indb 188 2019/10/02 10:15

189TERM 4 I CHAPTER 8 DATABASES I UNIT 8.5 Manipulating data

Example 8.9 Dams Application

For this project, you will use the functions listed above to perform calculations and apply � lters to a database.
To do this:

1. Open the project DamsApp_p in the 08 – DamsApplication Folder. You should see the following user interface.

In this application, the data module and all the database connections have already been made. Your only task
will be to create the OnClick events for the different buttons and write code to make each button function.

The database DamsDB contains the following � elds and relationship:

Take note of the primary keys and foreign key as these � elds are necessary when accessing data across tables.

2. Create OnClick events for the [First], [Previous], [Next] and [Last] buttons.

Navigating to the � rst record in the tblDams

In the OnClick event for btnFirst, add the following line of code:

dbmDamsDB.tblDams.First;

IT-Practical-LB-Gr11.indb 189 2019/10/02 10:15

190 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example 8.9 Dams Application continued

Navigating to the previous record in the tblDams

In the OnClick event for btnPrevious, add the following line of code:

dbmDamsDB.tblDams.Prior;

Navigating to the next record in the tblDams

In the OnClick event for btnNext, add the following line of code:

dbmDamsDB.tblDams.Next;

Navigating to the last record in the tblDams

In the OnClick event for btnLast, add the following line of code:

dbmDamsDB.tblDams.Last;

3. Save and test your application. The [First], [Previous], [Next] and [Last] buttons should now function, allowing
you to navigate through tblDams.

CALCULATING THE SUM AND AVERAGE WITH DATA FROM A DATABASE TABLE

Guided activity 8.2 Calculating the Average Capacity of all dams (Project DamsApp_p)

8.2.1 Create an OnClick event for the [Average Capacity] button.

8.2.2 The � eld Capacity in tblDams contains the maximum quantity of water that each dam can store. We will now
write code to calculate the average capacity based on the data in the table. In order to calculate the average, we
� rst need to determine the total capacity (sum).

We begin by declaring two variables: rSum and rAve. Since rSum will be used to determine the sum by adding
each Capacity value to it, we need to initialise it to 0.

rSum := 0;

8.2.3 Our next step is to move the iterator (pointer) to the � rst record in the table. This is necessary because (by user
action or processing), the iterator could be at any point in the table. We need to make sure that processing will
start at the � rst record.

dbmDamsDB.tblDams.First;

8.2.4 Next, we need to use a WHILE-Do-loop to iterate through every record. This is necessary as we have to process
every record, extracting its capacity value and adding it to rSum.

while NOT dbmDamsDB.tblDams.EOF do
begin
…
end;

To add each dam’s capacity value to rSum, we include the following line inside the WHILE-Do-loop:

rSum := rSum + dbmDamsDB.tblDams[‘Capacity’];

The loop repeats as long as the iterator (pointer)
is NOT pointing to the End of File (table)

IT-Practical-LB-Gr11.indb 190 2019/10/02 10:15

191TERM 4 I CHAPTER 8 DATABASES I UNIT 8.5 Manipulating data

Guided activity 8.2 Calculating the Average Capacity of all dams continued

8.2.5 Next, within the WHILE-Do-loop, we instruct the iterator to move to the next record in order to continue the
process of calculating the total capacity.

dbmDamsDB.tblDams.Next;

8.2.6 After the WHILE-Do-loop terminates, we will now have the total capacity stored in rSum. We can now use this
total to calculate the Average.

rAve := rSum / dbmDamsDB.tblDams.RecordCount;

8.2.7 Finally, we will output the average to the Output Area (redOut).

redOut.Lines.Add('Average Capacity: ' + FloatToStr(rAve));

8.2.8 Save and run your application. Clicking the [Average Capacity] button should now calculate and display the
average capacity of all dams.

CALCULATIONS BASED ON A SPECIFIC RECORD
In the previous button, we wrote code that processed the entire table, by reading and processing each
value consecutively.

Depending on the scenario, it may be necessary to process a single record only.

Guided activity 8.3 Determining % of water currently in a speci� c dam (Project DamsApp_p)

8.3.1 The � eld Capacity indicates the maximum amount of water that a dam can store.

8.3.2 The � eld DamLevel indicates the current amount of water in the dam.

8.3.3 To express how full the dam is as a percentage, we can use the following formula:

(DamLevel / Capacity) * 100

8.3.4 When the user clicks on a dam in the tblDams DBGrid and then clicks on the [Calculate % Full] button, we will
extract the relevant values from the table, calculate the percentage and display the percentage to the Display
Area (redOut).

Writing the code:
1. Create an OnClick event for the [Calculate % Full] button.

2. Declare a variable of type String for the selected dam’s name and three variables of type Real to store the DamLevel,
Capacity and calculated percentage.

var
 sName : String;
 rLevel, rCapacity, rPerc : Real;

IT-Practical-LB-Gr11.indb 191 2019/10/02 10:15

192 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 8.3 Determining % of water currently in a speci� c dam continued

3. Next, write the code below, which will extract, process and output the necessary data.

 sName := dbmDamsDB.tblDams['DamName'];
 rLevel := dbmDamsDB.tblDams['DamLevel'];
 rCapacity := dbmDamsDB.tblDams['Capacity'];

 rPerc := (rLevel / rCapacity) * 100;

 redOut.Clear;
 redOut.Lines.Add('Dam Name: ' + sName);
 redOut.Lines.Add('Level: ' + FloatToStr(rLevel));
 redOut.Lines.Add('Capacity: ' + FloatToStr(rCapacity));
 redOut.Lines.Add('Percentage Full: ' +
 FloatToStrF(rPerc, ffFixed, 3, 2));

4. Save and run your application. Clicking on a Dam in tblDams dbGrid and then clicking the [Calculate % Full] button
should now calculate and display the percentage level of the selected dam.

DISPLAYING DATA BASED ON A SPECIFIC CRITERION
A very common process in programming is searching through a dataset for records that meet certain
criteria and then using these values in further processing; or simply displaying them.

Guided activity 8.4 Display all Dams completed after the year 2000 (Project DamsApp_p)

The � eld YearCompleted indicates the year when each dam’s construction was concluded.

We will now loop through tblDams and test each dam’s YearCompleted value based on our criteria. If the value meets
our criteria, we will display the dam’s name.

8.4.1 Create an OnClick event for the [List of Dams post 2000] button.

Calculates the % using
the provided formula.

Outputs calculated data

Outputs
calculated
data

IT-Practical-LB-Gr11.indb 192 2019/10/02 10:15

193TERM 4 I CHAPTER 8 DATABASES I UNIT 8.5 Manipulating data

Guided activity 8.4 Display all Dams completed after the year 2000 continued

8.4.2 The code and explanations are provided below:

 redOut.Clear;
 redOut.Lines.Add('List of Dams completed after 2000');

 dbmDamsDB.tblDams.First;

 while not dbmDamsDB.tblDams.EOF do
 begin

 if dbmDamsDB.tblDams['YearCompleted'] > 2000 then
 begin
 redOut.Lines.Add(dbmDamsDB.tblDams['DamName']);
 end;

 dbmDamsDB.tblDams.Next;

 end;

8.4.3 Save and run your application. Clicking on the [List of Dams post 2000] button should now display a list of dam
names for dams completed after the year 2000.

SEARCHING FOR RECORDS BASED ON USER INPUT
Searching based on user input uses an algorithm very similar to the one used in the previous Guided
activity. The only difference is instead of using a constant condition, the condition will compare the � eld
being tested against the user’s input.

Guided activity 8.5 Search for a Dam Name speci� ed by the user (Project DamsApp_p)

8.5.1 Create an OnClick event for the [Search by Dam Name] button.

8.5.2 Our aim is to prompt the user to input the name of a Dam. We then loop through tblDams and identify all dams
that match the input name. The dam’s name, level and capacity will be displayed if it is found. If no results are
found, an appropriate message is displayed instead.

Clears Display Area and
displays a Heading

Sets pointer to � rst record

Loops through entire
Dams table

Tests for criterion

If condition is met, Dam’s
name is displayed

Moves pointer to next
record for testing

IT-Practical-LB-Gr11.indb 193 2019/10/02 10:15

194 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 8.5 Search for a Dam Name speci� ed by the user continued

The code and explanations are provided below:

 sTarget := InputBox('Dams DB', 'Enter Dam Name', '');

 bFound := FALSE;

 dbmDamsDB.tblDams.First;

 while not dbmDamsDB.tblDams.EOF do
 begin

 if dbmDamsDB.tblDams['DamName'] = sTarget then
 begin
 redout.Lines.Add('Dam Name: ' + dbmDamsDB.tblDams['DamName']);
 redOut.Lines.Add('Capacity: ' +
 FloatToStr(dbmDamsDB.tblDams['Capacity']));
 redOut.Lines.Add('Dam Level: ' +
 FloatToStr(dbmDamsDB.tblDams['DamLevel']));

 bFound := TRUE;
 end;

 dbmDamsDB.tblDams.Next;

 end;

 if NOT bFound then
 begin
 showMessage('Dam not found');
 end;

8.5.3 Save and run your application. Clicking on the [Search by Dam Name] button should now prompt the user to
input the name of a dam. The application should then locate and display the target dam’s details or display the
‘Dam not found’ DialogBox if the target was not located.

Gets user’s input – value
being searched for.

Flag variable to determine if search was successful or not.

Moves pointer to � rst record; the search will begin at the � rst record.

Loops through entire table. NOTE: if searching for a single
value, the � ag can be included in the While condition to
terminate the loop as soon as the target is found

Tests each Dam Name against target

If the Dam Name matches the target, the relevant � elds are output and
the Flag is changed to TRUE indicating that the search item was found

Moves the pointer to the next record for testing

When the While loop terminates and the � ag is still
FALSE, it means that the search target was not found.

Displays an appropriate message

IT-Practical-LB-Gr11.indb 194 2019/10/02 10:15

195TERM 4 I CHAPTER 8 DATABASES I UNIT 8.5 Manipulating data

IDENTIFY FIELDS WITH NULL VALUES
When processing values from a database table, it is sometimes
necessary to identify � elds which contain a null (empty) value. Note
that null should not be confused with 0 or an empty string (''). If a
numeric � eld is assigned to 0 or a String � eld is assigned to an empty
string, both are considered to hold values. Having a null value means
that the � eld is empty and has not been initialised. Fields with null
values can cause run-time errors when looping through a table or
cause logical errors when processing calculations such as averages.

Guided activity 8.6 Identify Dams with NULL values in the HeightOfWall � eld (Project DamsApp_p)

8.6.1 Create an OnClick event for the [List with Null Height] button.

Our aim to display the dam names for all dams which have a null value for the HeightOfWall � eld.

The code and explanations are provided below:

 redOut.Clear;
 redOut.Lines.Add('List of Dams with empty HeightOfWall values');

 dbmDamsDB.tblDams.First;

 while not dbmDamsDB.tblDams.EOF do
 begin

 if dbmDamsDB.tblDams['HeightOfWall'] = null then
 begin
 redOut.Lines.Add(dbmDamsDB.tblDams['DamName']);
 end;

 dbmDamsDB.tblDams.Next;

 end;

8.6.2 Save and run your application. Clicking on the [List with Null Height] button should now loop through tblDams
and identify the dams with null HeightOfWall values and display the corresponding dam names into the
Output Area.

New words

null – to represent an
empty value

Tests each HeightOfWall
against the constant null
which is used to test for
empty variables / � elds.

Displays Dam Name if
condition is met

Moves pointer to next record

Moves pointer to � rst record

Loops through entire table

IT-Practical-LB-Gr11.indb 195 2019/10/02 10:15

196 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

COUNTING FIELDS THAT MATCH SPECIFIC CRITERIA
Statistical calculations often require us to count the number of records which meet certain criteria.
The process is very similar to the methods we’ve already explored.

Guided activity 8.7 Count the number of dams with names beginning with a speci� ed letter
(Project DamsApp_p)

In this activity, the user will input a letter of the alphabet. We will then loop through the tblDams table and count the
number of dams that have a name beginning with that letter.

8.7.1 Create an OnClick event for the [Count names by Letter] button.

The code and explanations are provided below:

 sTarget := InputBox(‘Dams DB’, ‘Enter Search Letter’, ‘’)[1];

 iCount := 0;

 dbmDamsDB.tblDams.First;

 while not dbmDamsDB.tblDams.EOF do
 begin
 sDamName := dbmDamsDB.tblDams['DamName'];

 if sDamName[1] = sTarget then
 begin
 inc(iCount);
 end;

 dbmDamsDB.tblDams.Next;

 end;

 redOut.Text := IntToStr(iCount) + ' dams begin with letter ' + sTarget;

8.7.2 Save and run your application. Clicking on the [Count names by Letter] button should now prompt the user to
input a letter of the alphabet and then loop through tblDams. It will then identify dam names beginning with
provided letter and increase the counter every time a dam is identi� ed. Output will be displayed in the
Rich Edit Box.

Letter being
searched for is
input by the user

Whenever we count, it is compulsory
to initialise our Counter to 0

Moves pointer to � rst record

Loops through entire table

Extracts dam name from
tbldams for processing

Tests 1st character in Dam Name to letter
provided by user. If they match, the Counter
variable (iCount) is increased by 1.

Moves pointer to next record

Output to user

IT-Practical-LB-Gr11.indb 196 2019/10/02 10:16

197TERM 4 I CHAPTER 8 DATABASES I UNIT 8.5 Manipulating data

READING DATA ACROSS RELATED TABLES
Most professional databases have multiple tables and it is often necessary to read and manipulate data
across the tables. In Grade 11, we will be learning the basics of reading data across multiple tables.
In Grade 12, this concept will be expanded upon, including the use of SQL statements to
manipulate datasets.

THE FOREIGN KEY
Whenever we work with multiple tables, it is
important to study the Entity Relationship

Diagram and determine the Primary keys and
Foreign keys as these are necessary for us to
successfully extract and manipulate the data.

In the case of DamsDB:
● DamID is Primary Key for tblDams.
● TownID is the Primary Key for tblTowns.
● DamID is the Foreign Key in tblTowns and links the two tables.

Guided activity 8.8 Finding the Dam linked to a Town (Project DamsApp_p)

When the user clicks on a Town in the dbGrid linked to tblTowns, we will identify the DamID (Foreign Key) connected to
the town. We will then loop through tblDams and search for the DamID (Primary Key) in tblDams. Once we � nd it, we will
display the Dam Name and its associated River from tblDams.

8.8.1 Create a OnCellClick event for dbGrid dbgTowns.

8.8.2 Our � rst step will be to extract the DamID from tblTowns. This will enable us to identify the foreign key we will be
searching for.

sDamID := dbmDamsDB.tblTowns['DamID'];

8.8.3 Our next step is to point the other table to the � rst record, so that we can loop through it and search for the
foreign key (sDamID).

dbmDamsDB.tblDams.First;

8.8.4 We can now loop through tblDams, searching for the DamID extracted from tblTowns.

while NOT dbmDamsDB.tblDams.EOF do

8.8.5 Inside the WHILE-Do-loop, we compare each Primary Key (DamID) in tblDams with the extracted Foreign
Key from tblTowns (sDamID). When we identify a match, we have found the corresponding record in tblDams.
We can then output the Dam Name and River Name (or any other � elds, if necessary).

 if dbmDamsDB.tblDams['DamID'] = sDamID then
 begin
 redOut.Lines.Add('Dam Name: ' + dbmDamsDB.tblDams['DamName']);
 redOut.Lines.Add('River: ' + dbmDamsDB.tblDams['River']);
 end;

8.8.6 Finally, within the WHILE-Do-loop, we move the iterator to the next record:

dbmDamsDB.tblDams.Next;

Take note

You will learn more about
Database design in
Chapter 9 IT Theory.

New words

Entity Relationship
Diagram – to show the
relationships of entity sets
stored in a database

IT-Practical-LB-Gr11.indb 197 2019/10/02 10:16

198 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity 8.8 Finding the Dam linked to a Town continued

Notes:

● A � ag can be used to terminate the loop once a match is found. This will improve the ef� ciency of the solution.
● If referential integrity is enabled in the database relationship, there is no need to cater for a ‘match not found’

message as the foreign key is guaranteed to exist in the other table.

8.8.7 Save and test the application. By clicking on a town in the dbGrid linked to tblTowns, the corresponding dam
data should be displayed in the RichEditBox.

CONSOLIDATION ACTIVITY Chapter 8: Databases

QUESTION 1

Select the correct option for the following questions.

1.1 Which of the following components is not used to display a table from a database in Delphi?

a. TADOConnection

b. TDBGrid

c. TADOTable

d. TADODataSource

1.2 Which of the following options best describes the relationship between the database and Delphi database
components.

a. Database → D ataSource → Connection → Table → Grid

b. Database → Connection → DataSource → Table → Grid

c. DataSource → Database → Table → Connection → Grid

d. Database → Connection → Table → DataSource → Grid

1.3 Which line below can be used to change the value of the ‘Age’ � eld of the selected record to 5.

a. tblChildren['Age'] := 5;

b. tblChildren.Age := 5;

c. tblChildren.Age.Set(5);

d. None of the above

1.4 What is the � rst step you need to follow when stepping through data from a database in your application.

a. Select the � rst record of your table.

b. Read the � elds that you would like to use in your application.

c. Create a WHILE-Do-loop that runs until you reach the end of the � le.

d. Move to the next record of your table.

IT-Practical-LB-Gr11.indb 198 2019/10/02 10:16

199TERM 4 I CHAPTER 8 DATABASES I UNIT 8.5 Manipulating data

CONSOLIDATION ACTIVITY Chapter 8: Databases continued

QUESTION 2

Open the project ShopApp_p in the 08 – ShopApp Folder.

The following user interface is provided.

The application is already connected to the Access database ShopDB, which uses has the following tables and
relationship:

The DataModule provided is named dbmShopDB and contains two ADOTable components named tblProducts and
tblSuppliers.

Write code for each event (2.1 to 2.11) to perform the tasks described below:

2.1 [2.1 Specials] Display a list of product names which are on special.

Products are on special when the OnSpecial � eld is set to TRUE.

The product names (Descrip) should be displayed to the Output Area.

2.2 [2.2 Count Specials] Count and display the number of products that are on special.

2.3 [2.3 Average Stock] Calculate and display the average stock available for all products.

2.4 [2.4 Total Product Value] Determine and display the Total Product Value (in Rand) for the selected product.
The total product value is calculated by multiplying a product’s Supplier Price (SuppPrice) by the number in
stock (Stock).

IT-Practical-LB-Gr11.indb 199 2019/10/02 10:16

200 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

CONSOLIDATION ACTIVITY Chapter 8: Databases continued

2.5 [2.5 Decrease Stock] When products are sold, their stock needs to be decreased accordingly.

Write code to decrease the stock value of the selected product by 1.

Display a con� rmation message.

2.6 [2.6 Add Supplier] Write code to add a new Supplier to the Supplier table tblSuppliers.

a. Generate a SuppID by combining the letter ‘S’ with the next available number in the table.
(Hint: Use the RecordCount function + 1)

b. For the � elds, SuppName and CellNo, use the InputBox function to get values from the user.

c. Assign the AccBal (Account Balance) � eld to 0.

d. Write the record to the database and display a con� rmation message.

2.7 [2.7 Delete Product] Write code to Delete the selected product record after displaying a Con� rmation
Message.

2.8 [2.8 Search for Product] Write code to prompt the user to input a Product Name. Loop through tblProducts
and if the product is found, display the product’s stock. If the product is not found, display an appropriate
message.

2.9 [2.9 Calculate Selling Price] The selling price for all products has been initialised to 0. The actual selling
price is calculated using the following formula:

Selling Price ← Supplier Price * (1 + (Markup / 100))

Write code to loop through tblProducts and calculate and permanently store the Selling Price (SellPrice) for
all products.

2.10 Write code to display the Supplier’s Details of a particular product. When the user clicks on a Product in
dbgProducts, extract the SuppID (foreign key) associated with that product. Loop through tblSuppliers and
� nd the corresponding Supplier ID and display the Supplier’s name and mobile number.

Note: each product has only 1 supplier.

2.11 Write code to display all products supplied by a particular supplier. When the user clicks on a Supplier in
dbgSuppliers, extract the SuppID (Primary Key) associated with the supplier. Loop through tblProducts and
identify all products that are associated with that supplier. Display a list of the products names.

Note: a supplier may supply more than one item.

IT-Practical-LB-Gr11.indb 200 2019/10/02 10:16

201ANNEXURE A.1 I Problem solving

ANNEXURE
A.1 Problem solving

ALGORITHMS
In Grade 10 you learned that an algorithm is a plan drawn up to solve a particular
problem in a � nite number of steps. An algorithm can be represented using:
● a � owchart: A � owchart is a tool that can be used to visually show how an

algorithm works.
● pseudocode: Is written using the same logic and structures as a

programming language, but it does not have to follow any programming
language’s syntax or rules.

● a programming language: An algorithm is translated into programming code
for execution.

Remember that you must follow the problem solving steps to create high quality
algorithms. These are shown in the Figure A.1 below.

Understanding
the

problem

Design a set
of steps to
complete
the task

Defi ne the
desired
outputs

Update the
algorithm

List the
inputs
needed

Test the
algorithm

Figure A.1: Problem solving steps to create high quality algorithms

While there are no speci� c rules about how to write an algorithm, once it is
complete it should meet the following criteria:
● There may be zero input or many inputs.
● There must be a limited number of steps.
● The steps must be:

 unambiguous.
 Each step should:

— consist of a single task.
— be at the most basic level that cannot be broken into simpler tasks.

● All repetitions must have clear ending conditions.
● There must be at least one result (or output).

WHAT’S AN
ALGORITHM?

https://www.youtube.com/
watch?v=6hfOvs8pY1k

New words

unambiguous – not open
to more than one
interpretation

IT-Practical-LB-Gr11.indb 201 2019/10/02 10:16

202 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

FLOWCHART
In Grade 10 you also learned that a � owchart is a tool that is used to visually show
how an algorithm works.

The following symbols are used to create a � owchart:

Table A.1: Symbols used in a � owchart

ELEMENT FUNCTION SHAPE

Terminal Indicates the start and end of an algorithm.
Begin / End

Input / Output Used to input data (reading data) or output data
(displaying data). Input / Output

Processing Gives an instruction that the algorithm must
execute. Instruction

Decision Shows a decision (or condition) which affects
the algorithm’s behaviour. Decision

Connector Connects one element of the algorithm to the
next element. Show the direction in which you
move from one element to the next.

Work through the following Guided activity to remind yourself about how to
represent an algorithm.

Guided activity A.1 Isolating the digits in a number

Read in an integer number, then determine and display each digit of the number on a new
line.

Algorithm

Line 1: Read Number

Line 2: Digits = ‘ ‘

Line 2: Repeat

Line 3: Remainder = Integer remainder of (Number /10)

Line 4: Number = Number /10 (the integer answer ignoring the decimal value)

Line 5: Digits = String(Remainder) + Digits

Line 6: Until Number = 0

Line 7: Display Digits

Take note

Display each digit on a new
line in the order that they
appear in the number.

IT-Practical-LB-Gr11.indb 202 2019/10/02 10:16

203ANNEXURE A.1 I Problem solving

Guided activity A.1 Isolating the digits in a number continued

Flowchart

Here is an example of a � owchart for this algorithm:

Start

Read Number

1

2

3

4

5

6 7

Digits = ‘ ‘

Remainder = Number Mod 10

Number = Number div 10

Stop

True

False

Display DigitsNumber = 0?

Digits = IntToStr(Remainder) +’ ‘+ Digits

Trace table

You can also draw the trace table for the � owchart.

STEP# NUMBER DIGITS REMAINDER NUMBER = 0? OUTPUT

1 958

2

3 8

4 95

5 8

6 F

3 5

4 9

5 5 8

6 F

3 9

4 0

5 9 5 8

6 T

7 9 5 8

IT-Practical-LB-Gr11.indb 203 2019/10/02 10:16

204 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity A.1 Isolating the digits in a number continued

IPO Chart

You can also use an Input, Processing and Output (IPO) chart to show exactly what input, processing and output is
needed in your application. The IPO chart below is for the Isolate Digit algorithm:

INPUT PROCESSING OUTPUT

Number Repeat

Remainder ← Number mod 10

Digit ← Remainder + ‘ ‘ + Digits

//Add a space and digits to Remainder and assign digits

Number ← Number div 10

Until Number = 0

Digits

Activity A.1

A.1.1 A number is a prime number if it has only 2 factors, the number 1 and the number itself.

Do the following:

● Create an algorithm to determine whether a number is prime or not.
● Draw the corresponding � owchart for your algorithm.
● Draw an IPO chart for the problem.
● Trace through your � owchart using a value of 6.

IT-Practical-LB-Gr11.indb 204 2019/10/02 10:16

205ANNEXURE A.2 I Delphi components

ANNEXURE

A.2 Delphi components

In Grade 10 you also learned how to create a Graphical User Interface (GUI) by adding components.

Remember that components are added in the Delphi Design screen. Here are the components that you
should know by now:

Table A.2: Components used when creating a GUI

NAME DESCRIPTION COMPONENT/IMAGE

TForm The basis of the user interface in Delphi. All UI elements are
added to the form.

TPageControl TPageControl is a container component that is used to create a
multiple page dialog or tabbed notebook. TPageControl displays
multiple overlapping pages that are TTabSheet objects. The user
selects a page by clicking the page’s tab that appears at the top
of the control.

TLabel A simple label that can be used to display text in the UI.

TButton A button that can be pressed by users to trigger an event.

TBitButton TBitBtn has all the features of the TButton and adds the ability to
set a glyph.

TEdit A text box that can be used to obtain text input from users.

TCheckBox A checkbox that users can tick or untick.

TGroupBox and
TRadioButton

A group of checkboxes (called radio buttons) where only one
item can be selected at a time.

TComboBox A ComboBox combines an EditBox with a scrollable list.

TSpinEdit A TSpinEdit component is a TEdit with a TSpinButton attached.
The Value of the EditBox is numerical. By pressing the up and
down buttons of TSpinButton, the Value is increased or
decreased.

TImage A frame that displays an image.

IT-Practical-LB-Gr11.indb 205 2019/10/02 10:16

206 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

NAME DESCRIPTION COMPONENT/IMAGE

TShape Add a TShape object to a form to draw a simple geometric
shape on the form.

TListBox A box showing a list of items that can be selected.

TMemo A box that works as a large TEdit component, allowing users to
enter multiple lines of text.

TRichEdit A box that is similar to a TEdit and TMemo but offers more
formatting properties.

TPanel A frame that can be used to group different elements together
visually.

TTimer An invisible component that triggers an OnTimer event at
intervals.

Notes:
● When you create (or instantiate) a component, you are creating an

“instance” of the component’s class. An instance is also referred to
as an object.

● Remember the naming convention for components, for example, the
pre� x for a button component is btn.

● Each component has its own properties which can be changed on
the Properties Tab in the Object Inspector or through programming
code.
Example: btnSelect.Caption := ‘Choose’. The Caption property of the
button is changed to ‘Choose’.

● Components also have methods. Methods are prede� ned
instructions. Whenever a method is activated, it activates the lines of
code attached to the method for execution.
Example btnSort.Hide.

● When you type a component’s name followed by a dot(.), all the component’s properties and
methods (function and procedures) come up in a scrollable list for selection.
Example:

EXPLORING DELPHI
COMPONENTS

https://www.youtube.com/
watch?v=912Jh1o1sFA

IT-Practical-LB-Gr11.indb 206 2019/10/02 10:16

207ANNEXURE A.2 I Delphi components

Example of IPO Chart with components for the Isolate Digit Algorithm

INPUT PROCESSING OUTPUT

Number Repeat

Remainder ← Number mod 10

Number ← Number div 10

Add Remainder to Digits + a space

Until Number = 0

Digits

Input components Output components

edtNumber memDisplay

EVENTS
Delphi is an event-driven programming language. An event is linked to
some code which responds to some action. This action may be created by
user interaction, the system or code logic. An event handler manages the
execution of an event. An example is the OnClick event for a button.

In Grade 10 you learnt about the following event handlers:
● OnClick: Almost every visible component in Delphi can have an

OnClick event that activates when the user clicks on the component.
It is most often used with buttons but can also easily be used with
labels and images.

● OnCreate: An event speci� c to the form, it activates when the form is
created the � rst time. As a result, it can be used to add code that will
run every time the application is opened.

● OnTimer: An event speci� c to the timer, it activates every few
milliseconds, based on the value of the interval property of the timer.

Activity A.2

A.2.1 Open the GUIComponents_p project located in the Annex – GUI Components folder.

New words

instantiate – represent as
or by an instant

instance – an example or
single occurrence of
something

naming convention –
to name things (generally
agreed scheme)

properties –
the components or
building blocks

methods – prede� ned
instructions

IT-Practical-LB-Gr11.indb 207 2019/10/02 10:16

208 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity A.2 continued

Modify the form so that it displays as shown below:

Note the following:

● Add all the missing components using appropriate captions.
● Use the component naming convention to name the components appropriately and meaningfully based on

their purpose.
● The values for the combobox:

 2 Star

 3 Star

 4 Star

 5 Star

● Save and run the project.

IT-Practical-LB-Gr11.indb 208 2019/10/02 10:16

209ANNEXURE A.3 I Variables

ANNEXURE

A.3 Variables

In Grade 10 you learnt that variables are used to store information for later
retrieval. You can assign values to variables or read the value stored in a variable.
Study the table below to remind yourself about the variable types you learnt
about.

Table A.3: Variable types

VARIABLE TYPE DESCRIPTION

String Strings are made up of a sequence of numbers, letters and symbols.
A string variable can contain anything from a single character to
many characters. For example:

sName := 'Stefan'

Char Chars, or characters, are made up of a single number, letter or
symbol. As with strings, chars need to be surrounded by single
quotation marks. For example:

cGender := 'm';

Integer An integer can contain any positive or negative whole number (i.e. a
number without a decimal). These numbers can be used in
calculations. For example:

iMaximum := 5 + 4;

Real/Double A real/double can contain any positive or negative numbers
(including decimal numbers). As with integers, these numbers
can be used in calculations. For example:

rTotal := 1.2;

Boolean Booleans can contain only one of two values: TRUE or FALSE. This is
often used in conditional statements, where the program completes
a speci� c task if a condition is TRUE. For example:

bFactor := True;

All variable and component names must be unique. When naming variables and
components, remember to adhere to the following naming conventions:
● It must start with a letter, followed by letters or digits or the underscore(_)

character. No other special characters are allowed.
● Names should describe the data they will contain.
● Names should use camel case, which means the � rst word or letter is in

lowercase, and each word afterwards starts with an uppercase letter.
Example: countEvenNumbers.

● Component names should start with three letters describing the component.
Example: btnChangeText for a button or lblHelloWorld for a label.

● Variable names should start with a single letter describing the
type of variable:

i Integer

r Real/Double

s String

c Char

b Boolean

● For example: sName for a string or iMaximum for an integer.

LEARNING ABOUT
VARIABLES

https://www.youtube.com/
watch?v=vKmLQcuz5ds

IT-Practical-LB-Gr11.indb 209 2019/10/02 10:16

210 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

NUMBERS
Numbers are represented by:
● Integers (numbers without a decimal point)
● Reals (numbers with a decimal point)

The operations that can be performed on numbers are listed in Table A.4 below:

Table A.4: Operations

MATHEMATICAL OPERATOR MATHEMATICAL OPERATION

+ Addition

– Subtraction

* Multiplication

/ Real division

DIV Integer division

MOD Modulus (Remainder after integer division)

If you add, subtract, multiply, divide (DIV) or modulus (MOD) two integer numbers,
then the answer will be an integer number.

EXPRESSION ANSWER

37 + 5 42

37 – 5 32

37 * 5 185

37 DIV 5 7

37 MOD 5 2

If you add, subtract, multiply or divide (/) two real numbers, then the answer will
be a real number.

EXPRESSION ANSWER

37.83 + 5.2 43.03

37.83 – 5.2 32.63

37.83 * 5.2 196.716

37.83 / 5.2 7.275

37.83 / 5 7.566

In the last row of the table above: 5 is included in the real arithmetic calculation
37.93 / 5 because:
● Integers are a subset of real numbers. Every integer can be represented as a

Real
● 5 can be written as 5.0.

CONVERTING REAL
NUMBERS TO STRINGS

https://www.youtube.com/
watch?v=7YqvMLJBb64

IT-Practical-LB-Gr11.indb 210 2019/10/02 10:16

211ANNEXURE A.3 I Variables

ORDER OF PRECEDENCE
Basic mathematical operators in mathematical expressions are evaluated using
the BODMAS-rule just like you would do when working in Mathematics. This is
known as the order of precedence.

Table A.5: The order of precedence

OPERATOR PRECEDENCE

Brackets () Highest level

* / DIV MOD Second level – from left to right – whichever one comes � rst

+ – Third level – from left to right – whichever one comes � rst

Example A.1 Using the order of precedence in calculations

2 + 3 * 26 / (16 – 3) – 5

= 2 + 3 * 26 / 13 – 5 (Level 1 – Brackets)

= 2 + 72 / 13 – 5 (Level 2 – multiplication)

= 2 + 6 – 5 (Level 2 –division)

= 8 – 5 (Level 3 – addition)

= 3 (Level 3 – subtraction)

CONVERSION OF DATA TYPES AND FORMATTING
Often, we need to convert between data types. The functions used to convert
data types is shown in Table A.6 below.

Table A.6: Function used to convert data types

FUNCTION DESCRIPTION EXAMPLE

StrToInt(sInput) Converts the sInput value to an integer. StrToInt(‘500’);

StrToFloat(sInput) Converts the sInput value to a real. StrToInt(‘500.1’);

IntToStr(iInput) Converts the iInput value to a string. IntToStr(500);

FloatToStr(rInput) Converts the rInput value to a string. FloatToStr(500.1);

The FloatToStrF function also converts a � oat number into a string format:
● Syntax: FloatToStrF(Value, Format, total number of digits, number of

decimal digits)
● Format can be any format from the table below:

FORMATS ALLOWED DESCRIPTION

ffCurrency Formats the value with the currency included

ffExponent Formats the value in scienti� c notation

ffFixed Formats the value with the number of decimal as speci� ed

ffGeneral General number format. Includes decimals only when required

ffNumber Corresponds to ffFixed, but uses the thousands separator

IT-Practical-LB-Gr11.indb 211 2019/10/02 10:16

212 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

MATHEMATICAL METHODS
You learnt about the following mathematical methods in Grade 10:

METHOD PURPOSE

Random() Generates a random number from 0 to less than 1.

 rNumber := Random()

If you want to generate a number from a to b, then use the formula:

 iNumber := Random(b – a + 1) + a
Example: To generate a random number in the range 10 to 99 the code is:

 iNumber := Random(90) + 10

Round() The Round function rounds a real number to an integer value.

The real number X is rounded to the nearest whole number. If X is exactly
halfway between two whole numbers, the result is always the even number
of the two whole numbers.

Examples: iAns := Round(12.4) is 12

 iAns := Round(12.5) is 12 (rounds down to even)

 iAns := Round(12.6) is 13

 iAns := Round(13.5) is 14 (rounds up to even)

Trunc() The Trunc function truncates (removes or ‘chops off’) the decimal part of a
real number. It returns an integer after the truncation.

Examples: iAns := Trunc(12.4) is 12

 iAns := Trunc(12.8) is 12

Sqr() The SQR function returns the square of an integer or real number.
The return value is the same type as the number being squared.

Examples: iSqrAns := Sqr(5) is 25

 rSqrAns := Sqr(6.2) is 38.44

Sqrt() The SQRT function returns the square root of a number. The result type is
always real. Remember that the square root of a negative number is
unde� ned.

Examples: rAns := Sqrt(31.36) is 5.6

 rAns := Sqrt(144) is 12.0

Note:
● To prevent Delphi from generating the same set of random numbers, you

need to place the randomize command at the start of your application:
Example:

begin
 …
 Randomize
 iNum := Random(20) + 1;
 rValue := Random ();
 …
end;

● This will ensure that each time your application runs, a new set of random
numbers will be generated

MATH OPERATIONS

https://www.youtube.com/
watch?v=s_PNKJ2x1x4

IT-Practical-LB-Gr11.indb 212 2019/10/02 10:16

213ANNEXURE A.3 I Variables

FORMATTING NUMBERS IN A MEMOBOX
You can format data in a MemoBox using the Format function.
 Format(‘%8s%10.2f’,[‘Average’,53.861])
Note:
● The format function has two arguments
● The � rst argument ‘%8s%10.2f’ is a string that holds instructions for

formatting. In the control code used:
 % symbol indicates that the text which follows is formatting

instructions and not normal text.
 There are two formatting instructions in ‘%8s%10.2f’

● First formatting instruction %8s: 8 indicates that the string to be
displayed must contain 8 characters.

● Second formatting instruction %10.2f’: 10 indicates that the string to
be displayed must contain 10 characters. 2 indicates that the 10
characters must have 2 decimal points.

● The s and f indicate the type of data that will be formatted. Data types
are indicated as follows:

SYMBOL DATA TYPE

s String

f Floating point number

d Integer

m Monetary value (currency symbol will be shown – what symbol shows depends upon the Windows
regional settings)

● The second argument [‘Average’,53.861] holds the value/s that needs to be converted into a formatted
string.
 These value/s must appear within square brackets.
 The data types in the formatting instructions must match the data types of the values in the second

argument.
 The values can be variables or constants.

● If the display in the MemoBox has to be aligned correctly, you need to change the font property of the
MemoBox to a � xed font (where the shape of the character does not in� uence the output) such as
Courier New or Lucida Console.
Here are some examples:

memDisplay.Lines.Add(Format('%10s%10.2f',['value',45.345]));
memDisplay.Lines.Add(Format('%10s%10s%10s',['Number','Square','Square Root']));
memDisplay.Lines.Add(Format('%10d%10d%10.2f',[10,Sqr(10),Sqrt(10)]));

SCOPE OF A VARIABLE
Variables can be declared as follows:
● At the beginning of the unit; or
● They can be declared in an event, procedure or function.

Variables declared in an event handler, procedure or function are only created in the computer’s memory at the
start of the event, procedure or function execution and only exist as long as the event, procedure or function is
being executed. These variables cease to exist once the event, procedure or function has terminated. We call
these variables local variables, because they have a local scope, that is, they cannot be used in another event,
procedure or function.

New words

� rst argument – is a string that
holds instructions for formatting

second argument – holds the
values that needs to be
converted into a formatted string

event – an occurrence of
something

procedure – an of� cial way of
doing something

function – the operation of
something in a particular way

local variable – variables that
have a local scope

Take note

We know that a variable must � rst be declared
before it is used in a program. However, where it
is declared in a program, determines its scope.

IT-Practical-LB-Gr11.indb 213 2019/10/02 10:16

214 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

We call variables declared at the beginning of a program global or
non-local variables. These variables have class scope because
they can be used in any event, method or procedure. You will
learn about this in later chapters.

COMMENT STATEMENTS
Comments are used by programmers to make a program more
easier to read and understand its purpose.
Comments are used to explain:
● what a section of programming code does.
● how a certain piece of code works (the logic used).

Any text preceded by two forward slashes (//) is considered a
comment and is ignored by Delphi. You can also block comment
code a group of statements by using curly bracket{} so that the
code within the {} is ignored during execution.

Activity A.3

A.3.1 Open DistanceConversion_p project located in the
Annex – Distance Conversion folder. Distance in
certain countries are measured in inches, feet, yards
and miles as follows:

12 inches = 1 foot

3 feet = 1 yard

1760 yards = 1 mile

Write code for the [Convert] button that will read in the
distance in inches and convert the distance to foot
(feet), yards and miles.

A.3.2 Open TileCost_p project from the Annex – Tile Cost folder. Andile wants to tile his room � oor. He must calculate the
square metre (m2) that he requires for his room. In addition, he needs to add 10% additional m2 to his requirements
to cater for breakages. He likes a tile that costs R150 per m2. The tiles are sold in boxes. Each box holds tiles with a
measurement of 2.3 m2. Write code for the [Tile Calculator] button to read in the length and breadth of Andile’s
room, determine and print the following:

● The total m2 tiles required inclusive
of breakages.

● The number of boxes of tiles that must
be bought.

● The total amount that will be paid for the
boxes of tiles bought. Format the answer
to currency.

● Add comments to your code.
● Save and execute your program.

Take note

We will only declare global/
non-local variables in the Var and
implementation section of the Unit.

New words

global – is a programming
language construct, a variable that
is declared outside and function
and is accessible to all the
functions throughout the program

non-local – is a variable that is not
de� ned within the local scope

IT-Practical-LB-Gr11.indb 214 2019/10/02 10:16

215ANNEXURE A.4 I Decision making

ANNEXURE

A.4 Decision making

In every day life you often make decisions to solve a problem. The same is true
for when you write or develop a program – you have to use the decision-making
process regularly. In the decision-making process, conditions (criteria) are tested.
A condition evaluates one of the two Boolean values: TRUE or FALSE. The
outcome of the condition determines which one of the two paths (the YES/TRUE
path or the NO/FALSE path) will be followed. We say that decision making causes
branching to occur in the normal sequential program � ow.

In a � owchart, a decision is represented by a diamond symbol. Here are some
examples:

condition ?

False/No True/Yes
condition ?

False/No True/Yes

BOOLEAN EXPRESSIONS
A Boolean expression is an expression that evaluates to TRUE or FALSE.
There are three categories of Boolean expressions:
● Boolean variable
● Simple Boolean expressions
● Compound (complex) Boolean expressions.

BOOLEAN VARIABLES
You can assign a Boolean value to a Boolean variable, for example:
● bFound := True;
● bValid := False;

SIMPLE BOOLEAN EXPRESSIONS
Comparison operators are used to create conditions:

COMPARISON OPERATOR DESCRIPTION EXAMPLE OF CONDITIONS

> Greater than 6 > 7

>= Greater than or equal to iNumber >= 50

= Equal to sStr[3] = sStr[8]

< Less than rNum < 56.3

<= Less than or equal to 5 < = 8

<> Not equal to iItem <> 9

Take note

Branching along TRUE or
FALSE paths.

IT-Practical-LB-Gr11.indb 215 2019/10/02 10:16

216 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

COMPOUND BOOLEAN EXPRESSIONS
We use logical operators to create compound Boolean expressions. The logical
operators used are:
● AND logical operator
● OR logical operator
● NOT logical operator

In this section we will look at each logical operator in a bit more detail.

AND LOGICAL OPERATOR
The AND operator is used to test two conditions in the format:
 (condition1) AND (condition2)

Both conditions must evaluate to true for the result to be true. If either condition1
or condition2 is false, then the result will be false, for example: if A = 5 and B = 7
then:

BOOLEAN EXPRESSION CONDITION1 CONDITION2 RESULT

(A > 2) AND (B <= 7) True True True

(A > 2) AND (B > 7) True False False

(A = 3) AND (B > 5) False True False

(A = 3) AND (B > 7) False False False

OR LOGICAL OPERATOR
The OR operator is used to test two conditions in the format:
 (condition1) OR (condition2)

Both conditions must evaluate to false for the result to be false. If either condition1
or condition2 is true, then the result will be true, for example: if A = 5 and B = 7
then:

BOOLEAN EXPRESSION CONDITION1 CONDITION2 RESULT

(A > 2) OR (B <= 7) True True True

(A > 2) OR (B > 7) True False True

(A = 3) OR (B > 5) False True True

(A = 3) OR (B > 7) False False False

NOT LOGICAL OPERATOR
The NOT operator negates the result of the condition in the format:
 NOT(condition)

If the condition evaluates to true, then NOT(condition) evaluates to false. If the
condition evaluates to false, then NOT(condition) evaluates to true, for example:
if A = 5 and B = 7 then:

BOOLEAN EXPRESSION CONDITION RESULT

NOT(A > 2) True False

NOT (B > 7) False True

GLOBAL AND LOCAL
VARIABLES

https://www.youtube.com/
watch?v=LPRLU1_dGJE

IT-Practical-LB-Gr11.indb 216 2019/10/02 10:16

217ANNEXURE A.4 I Decision making

THE ORDER OF PRECEDENCE
You learnt about the order of precedence of mathematical operators. Similarly,
Boolean operators also have order of precedence. The order of precedence from
highest to lowest precedence is as follows:

OPERATOR/S LEVEL

NOT 1 (highest level of precedence)

*, /, DIV, MOD, AND 2

+, –, OR 3

=, <>, <, >, <=, >= 4

Example A.2 The order of precedence

Assume the value of the variables is as follow: Gender = ‘F’, Age = 15 and Sport is
‘Netball’.

Evaluate the following Boolean expressions:

(Gender = ‘F’) OR (Age > 10) AND (Sport = ‘Cricket’)

= TRUE OR TRUE AND FALSE

= TRUE OR FALSE

= TRUE

IF-THEN STATEMENT
In Delphi, you can use the IF-THEN statement to make decisions. IF and THEN
are keywords in Delphi. The IF-THEN statement executes the statement/s
following the THEN keyword if the condition is true and skips the execution of
these statement/s when the condition is false.

In the � ow chart below, block A represents statement/s following the THEN
keyword. Note how block A is skipped if the condition is FALSE.

condition ?

Block A

Block B

Both paths execute block B

Skip block A

Execute block A

true

false

Remember!

You cannot use IF and
THEN as variable names. If
you do, then you will get an
error ‘Declaration expected
but IF found’.

IT-Practical-LB-Gr11.indb 217 2019/10/02 10:16

218 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

SYNTAX OF IF-THEN STATEMENT
Delphi syntax of an IF-THEN statement, if one statement follows the THEN keyword:

If <condition> then
 <statement1>;

The THEN-keyword it not followed by a semicolon as it is not the end of the statement. The <statement1>
is followed by a semicolon and ends the IF-THEN statement.

Sometimes, if a condition is true, we need to execute more than one statement.

The syntax of an IF-THEN statement if more than one statement follows the THEN keyword. Multiple
statements are grouped together within the keywords Begin and End as shown below. It is seen as one
group of statements to be executed in the THEN part.

If <condition> then
begin
 <statement1>;
 <statement2>;
…
end;

Example A.3

If Gender = 'F' then
begin
 iNumGirls := iNumGirls + 1;
 lblNumGirls.caption := IntToStr(iNumGirls);
end;

IF-THEN-ELSE STATEMENT
In many situations you may want something to happen if a condition is met, and something else to happen
if the condition is not met. For example, all Grade 10 learners will go for an excursion, all other learners will
watch a movie. A decision needs to be made on the grade of a learner to determine which activity they
will participate in. In the condition if the grade is 10 then the learner will go on an excursion, else the learner
will watch a movie.

The IF-THEN-ELSE statement execute statement/s following the THEN keyword if the condition is true
and executes statement/s following the ELSE keyword when the condition is false.

IT-Practical-LB-Gr11.indb 218 2019/10/02 10:16

219ANNEXURE A.4 I Decision making

In the � ow chart below, block A represents statement/s following the THEN keyword. Block B represents
statement/s following the ELSE keyword. Both paths execute Block C.

false true

Activity = ‘Watch movie’ Activity = ‘Excursion’

Grade =10 ?

Display Activity

false

Execute Block B Execute Block A

Both paths execute Block C

true

Block B Block A

Condition?

Block C

SYNTAX OF IF-THEN-ELSE STATEMENT
Delphi syntax of an IF-THEN-ELSE statement if one statement follows the THEN and ELSE keywords:

If <condition> THEN
 <statement1>
ELSE
 <statement2>;

● The THEN and ELSE keywords are not followed by a semicolon
● The statement before the ELSE statement does not have a semi-colon
● If more than one statement appears in the THEN or ELSE part, then the statements must appear in a

BEGIN…END block
● A single statement does not appear in a BEGIN…END block

 If <condition> THEN
 begin
 <statement1>;
 …
 <statement4>
 End
 ELSE
 begin
 <statement5>;
 <statement6>;
 …
 end;

IT-Practical-LB-Gr11.indb 219 2019/10/02 10:16

220 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

NESTED IF-THEN STATEMENTS
A nested IF-THEN statement occurs when one conditional statement is placed inside another conditional
statement. By doing this your program � rst checks if the outer condition has been met before looking at
the inner conditional statement.

SYNTAX OF THE NESTED IF STATEMENT

IF <condition1> THEN
 IF <condition2> THEN
 <statement1>
 ELSE
 begin
 <statement5>;
 <statement6>;
 …
 end;

Example A.4

The code snippet below shows an example of a nested-if statement.

if iValue > 0 then
begin
 if iValue < 100 then
 ShowMessage('Number is between 0 and 100')
 else
 ShowMessage('Number is 100 or above');
end;

Note:
● The outer conditional statement (iValue > 0) is tested � rst. If this condition is true, the inner

conditional statement (iValue < 100) is tested next.
● If the conditional statement (iValue < 100) is true, then the ShowMessage(‘Number is between 0 and

100’) statement is executed else the ShowMessage(‘Number is 100 or above’), is executed.

IT-Practical-LB-Gr11.indb 220 2019/10/02 10:16

221ANNEXURE A.4 I Decision making

Example A.5

A company is handing out bags using the following criteria:

● If a person is a male and drinks Coke then he quali� es for a bag; otherwise no bag
● If a person is female and drinks Fanta then she quali� es for a bag; otherwise no bag

if Gender = 'Male' then
begin
 if Drink = 'Coke' then
 ShowMessage('You get a bag')
 else
 ShowMessage('No bag');
end;
if Gender = 'Female' then
begin
 if Drink = 'Fanta' then
 ShowMessage('You get a bag')
 else
 ShowMessage('No bag');
end;

CASE-STATEMENTS
Another type of decision making structure in Delphi is the CASE-statement. Instead of using a sequence
of cascading IF-THEN-ELSE-IF for decision making, the CASE-statement provides a tidy way of dealing
with decision making. The cascading IF-THEN-ELSE-IF allows you to execute a block code among many
alternatives. If you are checking on a value of an ordinal type variable using an IF-THEN-ELSE-IF, it is
better to use the CASE-statement.

The CASE-statement uses the following syntax:

Syntax of CASE-statement
CASE <variable> OF
 value1 : statement1;
 value2 : statement2;
 value3 : statement3;
 ELSE
 statement4;
end;

Notes:
● Start with the keyword CASE followed by a <variable> followed by the keyword OF. There is no

semicolon after the OF keyword.
● The CASE-statement does not have a begin but has an end.
● <variable> represents a variable name. The data type of the variable can be integer or character.
● Different cases:

 Value1, Value2 and Value3 refer to the cases against which <variable> will be compared and
must be of the same data type as <variable>.

 Each case is followed by a colon.
 The statements following the colon indicates what code must be executed for that case.

Example for case Value2, Statement2 must be executed.

IT-Practical-LB-Gr11.indb 221 2019/10/02 10:16

222 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

 Again, if more than one statement need to be executed in a case, it must be in a BEGIN... END
block

 A case can be represented by:
— An integer : 5
— A character : ‘A’
— Range : 3..5

● If the same action is required for more than one case then cases can be grouped as follows:

Case cLetter Of
'a','e','i','o','u': ShowMessage ('Vowel'); //grouped cases are
 //separated by comma

 Else
 ShowMessage ('Not a vowel')
End;

● When a match is found during the comparison, control of the program passes to that case and the
code of that case is executed and the CASE-statement is exited.

● The ELSE statement is optional. It is used to provide a default if none of the cases match the
<variable>.

IN OPERATOR
You can also test if an element is included in a set of values using the IN operator. The test returns true if
the element is found in the set of values; otherwise the test returns false.

IN operator Syntax
 Element IN [set of Values]

Notes:
● Element is the variable that is being tested against the s
● Element variable/value can only be an ordinal data type (integer, char and Boolean). The values in the

[set of values] must match the data type of element
● The IN operator checks whether the Element is found in the set [set of Values]. The set of values

appear within square brackets []

Example A.6

Case iGrade of

 10: ShowMessage ('Go to movies')
 11: ShowMessage ('uShaka Marine')
 12: ShowMessagw ('Drakensberg Excursion')
End;

IT-Practical-LB-Gr11.indb 222 2019/10/02 10:16

223ANNEXURE A.4 I Decision making

Example A.7

 Var cLetter:char;
 ….
 bFound := cLetter IN ['a','b','c'];
 if bFound then
 ShowMessage('Letter Valid')
 else
 ShowMessage('Letter Invalid');
 …

Notes

● If cLetter has the value ‘a’ then bFound will be true and ‘Letter Valid’ will display. Remember that ‘a’ is not the
same as ‘A’

● If cLetter has any other value than ‘a’, ‘b’ or ‘c’ then bFound will be false and ‘Letter Invalid’ will display.

As with CASE-statements, when using the IN operator the set of values can be:
● a range of values (with the minimum and maximum values separated by two full stops).
● individual values (with the values separated by commas).
● a combination of a range of values and individual values.

Table A.7: Examples of statements with IN operator

If iMonth in [1,2,3,4,5] then … Checks whether iMonth is one of the � rst 5 months. The set of number can also
be written as a range [1..5] because the numbers are inclusive

If iNum in [1..5,8, 50..53] … Checks whether iNum is in the set 1 to 5, 8 and 50 to 53

If cLetter IN [‘A’..’Z’,’a’..’z’]
then …

‘A’..’Z’ and ‘a’..’z’ indicate a range of uppercase and lowercase letters

When creating a conditional statement, the IN-operator is used in place of the equals operator. This is
because you are using the conditional statement to see if your value can be found inside the set.

IT-Practical-LB-Gr11.indb 223 2019/10/02 10:16

224 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Activity A.4

A.4.1 Open the ClientData_p project in the Annex – Client Data folder. The form is designed to capture the details of
a travel client.

Do the following:

● The image component imgPicture must display the Destinations image found in your Client Data folder.
Set the stretch and proportional properties to true.

● Create an OnClick event for the [Display] button to:
 Read the name, surname, age, gender, places travelled and Accommodation type for each client.

 A client is classi� ed according to the number of places visited as follows:

NUMBER OF PLACES VISITED CATEGORY

1 Place Occasional

2 Places Frequent

3 Places Avid

No Place Starter

● Display the name, surname, age, gender, places travelled, Category and Accommodation type for each client.

Example of sample output

IT-Practical-LB-Gr11.indb 224 2019/10/02 10:16

225ANNEXURE A.5 I Looping

ANNEXURE

A.5 Looping

Loops repeat certain lines of code until a speci� c condition is met. In most
programming languages, including Delphi, there are three types of loop
constructs:
● FOR-loop
● REPEAT-loop
● WHILE-loop

These three loops generally do the same thing: They repeat a number of
instructions until some condition is met. However, they differ in how they decide
when to start and stop the loops.

F OR-LOOP
The FOR-loop is known as an iteration loop since it runs for a speci� c number of
iterations. The syntax for the FOR-loop is:

FOR iCount ← Minimum to Maximum do
BEGIN // body of loop
 // 1 or more instruction(s)
END // NEXT iCount called

The FOR-loop needs a counter, which will be called iCount in the next example.
● The loop starts with the reserved/keyword word: FOR and the same line

ends with a DO.
● After the loop de� nition line, we have a start-end-block of code, that will be

executed several times.
● Counting from a minimum value being 1 (in the example) to a maximum

being 10 (as displayed). For each iteration the loop increases the counter
iCount with one (1). If one more than the maximum value (11) is reached by
the counter, the iteration comes to an end and the next statement following
the loop is executed.

All loops work on the I-T-C (initialise-Test-Change) principle:
I for Initialise: The variable/s that appear in the loop condition must be

initialised. These variables are called the loop control variable/s.
T for Test: The loop control variable/s in the condition of the loop is tested.
C for Change: Inside the body of the loop the loop condition variable/s should

be changed to ensure that the loop terminated at some point.

FOR LOOPING

https://www.youtube.com/
watch?v=kYgXRi_m0Ak

IT-Practical-LB-Gr11.indb 225 2019/10/02 10:16

226 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Example A.8

The ITC principle for the For-loop below
 …
 iSum := 0;
 For i := 2 to 5 do
 Begin
 iSum := iSum + i;
 memDisplay.Lines.Add(IntToStr(i);
 End; //for loop
 memDisplay.Lines.Add(IntToStr(i);
 …

The loop control variable is i.

I: Initial value of i is 2
T: Test is i <= 5
C: The value of i is incremented by 1 when the end of the loop is reached

IN DELPHI WE DO GET TWO TYPES OF FOR-LOOPS:
The incremental FOR-loop can be identi� ed by the command TO:
For iCount := 1 to 10 do … . It typically starts with a small value, which is increased
by one each time to reach the maximum or the end-value.

Delphi source code for an incremental for-loop:

Var
 iCount : Integer;
begin
for iCount := 1 to 10 do
 begin
 // execute instruction(s)
 end; // increment by 1 (always 1)
end;

The decremental FOR-loop can be identi� ed by the command downto: For
iCount := 10 downto 1 do … .
It starts with a large (maximum) value to be decreased by one each time to reach
the minimum or the end-value.

Delphi source code for a decremental for-loop:

Var
 iCount : Integer;
begin
for iCount := 10 downto 1 do
 begin
 // execute instruction(s)
 end; // decrement by 1 (always –1)
end;

 Since the integer loop control variable is either incremented or decremented with
each iteration, these loop control variables can be used within the body of the
loop if you need an increasing or decreasing integer. For example: using the loop
control variable to access each character in a string.

New words

incremental – relating to
or denoting an increase or
addition

decremental – the act or
process of decreasing or
becoming gradually less

Did you know

When used in a for-loop,
most people simply call the
loop-counter variable i or j.

IT-Practical-LB-Gr11.indb 226 2019/10/02 10:16

227ANNEXURE A.5 I Looping

 REPEAT LOOP
 The REPEAT…UNTIL loop has got its control structure at the end of the loop-block. That means one
iteration is always executed before the condition is tested! The REPEAT…UNTIL loop is called a post-
conditional loop because it checks whether it should continue running at the end of each loop.

Syntax of REPEAT…UNTIL loop
Repeat
 // one or more instruction(s)
Until (condition = true);

Note:
● The REPEAT…UNTIL loop structure does not need a BEGIN and END line.
● The REPEAT marks the begin of the loop and UNTIL marks the end of the loop.
● The statements in the loop body are executed repeatedly until the condition (a Boolean expression)

evaluates to true, that is, the loop body executes when the condition is false and terminates when the
condition becomes true.

● The condition is tested only after the loop body has been executed.
● The loop body is executed at least once.
● We say that this is an ICT loop. The test control variable is initialised before the loop. The change

takes place within the loop and the test takes place at the end of the loop.

WHILE-LOOP
The WHILE-loop does not necessarily run a speci� c number of times.
Instead, the while-loop is a conditional (like the REPEAT) but puts its
condition � rst before executing the looping block. Only if the condition is
satis� ed, the loop body will execute, that is, the loop body executes while
the condition is true and exits the loop when the condition is false.

The WHILE-loop is called a pre-conditional loop since the condition that determines whether it should run
is found at the start of the loop. If the condition is true, the loop activates and continues to repeat until the
condition is no longer true. If the condition is not met initially, the entire loop is skipped.

Syntax of WHILE..DO loop
WHILE (condition = True) do
BEGIN
 // 1 or more instruction
END // Test Condition again

Note:
● The loop starts with the keyword WHILE followed by the condition and then the keyword DO
● DO is not followed by a semi-colon
● The body of the loop appears within a BEGIN … END block
● The loop executes while the condition is true and exits the loop once the condition evaluates to false
● The loop condition is tested at the beginning of the loop. If the loop condition evaluates to false upon

entering the loop, then the loop is not executed at all.

New words

conditional – to put its
condition � rst before
executing the looping back

IT-Practical-LB-Gr11.indb 227 2019/10/02 10:16

228 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Differences between a WHILE-loop and a REPEAT-loop:

WHILE-LOOP REPEAT LOOP

● Pre-Test loop. The condition is tested at the beginning of
the loop

● Post-Test loop. The condition is tested at the end of the
loop

● Since the condition is tested at the beginning of the loop,
the loop may not be executed at all if the condition is false

● Since the condition is tested at the end of the loop, the
loop is executed at least once

● The loop executes while the condition is true ● The loop executes while the condition is false

● The loop terminates when the condition becomes false ● The loop terminates when the condition becomes true

● Works on the ICT principle ● Works on the ICT principle

USING LOOPS WITH COMPONENTS
Loops are often used with components like ListBoxes to show the results from
the loop. This is because the ListBox’s Items.Add method allows you to create a
list of items that can then be shown in the ListBox. ListBoxes are therefore an
easy way to both store and display the results of a loop. This also works with
components like the TComboBox and the TRadioGroup.

With the use of a simple loop, you can quickly add new items to these components,
as shown by the code snippet below.

Adding items to components
for i := 1 to 10 do
begin
 sValue := IntToStr(i);
 TComboBox.Items.Add(sValue);
 TRadioGroup.Items.Add(sValue);
 TListBox.Items.Add(sValue);
end;

Figure A.2: Different components with the Items.Add method

FOR AND WHILE LOOPS

https://www.youtube.com/
watch?v=FM1IemZvP_Y

IT-Practical-LB-Gr11.indb 228 2019/10/02 10:16

229ANNEXURE A.5 I Looping

Once an item has been added to one of these components, you can read the value using the
following syntax.

Reading an item from a particular position in a ListBox
sValue := TListBox.Items[0]; // Reads the fi rst value.
sValue := TListBox.Items[1]; // Reads the second value.
...
sValue := TListBox.Items[i – 1]; // Reads the i-th value.

Examples of assigning values to a particular position in a ListBox:

 lstDisplay.Items[0] := 'Name';
lstRolls.Items[iTotal-2] := IntToStr(iCurrent);

Guided activity A.1 High roller

For the high roller application, you will create a bar chart that shows which numbers occur most frequently when you roll
two dice. To create this application:

A.1.1 Create a new folder named High Roller.

A.1.2 Create a new HighRoller_p project and save it in the folder Annex – High Roller.

A.1.3 Create the following user interface:

● Use labels to display the possible outcome when the two dices are thrown.
● Set the Shape property of TShape shapes to stRectangle and change their Color property to a colour of

your choice.
● Use labels below the TShapes to display how many times a total was generated.
● Place two ListBoxes next to each other. The � rst ListBox displays the possible totals when the two dices are

rolled. The second ListBox displays how many times a particular total was achieved
● Add an EditBox to read the number of times the dices must be thrown

A.1.4 Create an OnActivate event to:
Clear the ListBox lstRolls. The ListBox lstRolls will keep count of the number of times each total was generated
when the two dices were thrown. Initially it sets all counters to zero. Clears the ListBox. Set the initial counter
value of each total to zero (0). Eleven such counters are set, that is, counters for totals from 2 to 12 are only
possible. The two dices cannot roll a total of 0 or 1.

IT-Practical-LB-Gr11.indb 229 2019/10/02 10:16

230 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity A.1 High roller continued

● It also sets the totals (2 to 12) that can be generated in the ListBox lstNum.

 lstRolls.Items.Clear;
 for i := 2 to 12 do
 begin
 lstRolls.Items.Add('0');
 lstnum.Items.Add(IntToStr(i));
 end;

A.1.5 Create an OnClick event for the [Roll’em] button.

● Declare the local variables shown below:

Var i, iDie1, iDie2, iTotal, iCurrent, iMaxHeight, iMaxCount:
Integer;

● Since you will be using random numbers for the dice and want Delphi to generate different random numbers
each time, you need to use the Randomize command

● Read the number of times you want to roll both dices from the EditBox edtNum.
● For 1 to the value read from the edtNum EditBox:

Randomly generate two numbers in the range 1 to 6.
● Calculate the total for both dices and store it in variable iTotal.
● For the calculate total, read its counter from the ListBox lstRolls and increment by 1 and store the value in

iCurrent:

iCurrent := StrToInt(lstRolls.Items[itotal-2]) + 1;

● Remember that the ListBox displays the � rst item in position 0. So if iTotal is 4, then the counter counting
the number of times 4 occurs will be displayed in position 2.

● Set the value of lstRolls[iTotal-2] to the iCurrent value

lstRolls.Items[iTotal-2] := IntToStr(iCurrent);

● The code is:

Dice roll for-loop
 for i := 1 to StrToInt(edtNum.Text) do
 begin
 iDie1 := Random(6) + 1;
 iDie2 := Random(6) + 1;
 iTotal := iDie1 + iDie2;
 iCurrent := StrToInt(lstRolls.Items[itotal-2]) + 1;
 lstRolls.Items[iTotal-2] := IntToStr(iCurrent);
 end;

IT-Practical-LB-Gr11.indb 230 2019/10/02 10:16

231ANNEXURE A.5 I Looping

Guided activity A.1 High roller continued

● Set the caption of the 11 labels below the rectangle shapes to equal to the corresponding counter value
from the lstRolls ListBox.

Update labels text
 lblCount2.caption := lstRolls.Items[0];
 lblCount3.caption := lstRolls.Items[1];
 lblCount4.caption := lstRolls.Items[2];
 lblCount5.caption := lstRolls.Items[3];
 lblCount6.caption := lstRolls.Items[4];
 lblCount7.caption := lstRolls.Items[5];
 lblCount8.caption := lstRolls.Items[6];
 lblCount9.caption := lstRolls.Items[7];
 lblCount10.caption := lstRolls.Items[8];
 lblCount11.caption := lstRolls.Items[9];
 lblCount12.caption := lstRolls.Items[10];

A.1.6 Save and test your application. Here is an example of sample output:

A.1.7 Use a FOR-loop with a value from 2 to 12 to identify which item in the ListBox has the largest value and store
this value in the iMaxCount variable.

Finding largest value
 iMaxCount := 0;
 for i := 2 to 12 do //OR for i := 0 to 10 do
 begin
 if StrToInt(lstRolls.Items[i-2]) >= iMaxCount then
 iMaxCount := StrToInt(lstRolls.Items[i-2]);
 end;
 lstRolls.Items.Add('Max: '+ IntToStr(iMaxCount));

A.1.8 Set the value of variable iMaxHeight to equal to the Height property of the form minus 150.

iMaxHeight := frmHighRoller.Height-150;

IT-Practical-LB-Gr11.indb 231 2019/10/02 10:16

232 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Guided activity A.1 High roller continued

A.1.9 To calculate the height of the � rst box, use the following code.

Shape height
Shp1.Height := Round((StrToInt(lstRolls.Items[0]) / iMaxCount) *

iMaxHeight);

● The counter for the � rst total 2 is stored in position 0 in the lstRolls ListBox. This value is retrieved and
converted to integer.

● Calculate the rounded percentage of the value retrieved in bullet one divided by the maximum variable
iMaxCount . The percentage is rounded since the height property can only accept an integer value.

● The percentage is then multiplied with the maximum allowed height of the shapes. Each bar’s height will
therefore be equal to a percentage of the maximum possible height.

A.1.10 Add the same formula to all the other shapes, making sure to update the index of lstRolls.Items for each shape.

A.1.11 Save and test your application.

Activity A.5

A.5.1 1. Open the IsolateDigits_p project from the Annex – Isolate Digits folder and do the following:

● Create an OnClick event for the [Isolate Digits – Method 1] button to isolate the digits of a number. Use the
method to isolate digits as shown in the Guided activity in Unit 1.1 of this chapter. Display the isolated digits
in the order in which they appear in the number on separate lines.

● Create an OnClick event for the [Isolate Digits – Method 2] button to isolate the digits of a number using an
alternate method to the one in bullet 1. Display the isolated digits in the order in which they appear in the
number on separate lines.

A.5.2 You can generate any Fibonacci sequence given the � rst and second term. In a Fibonacci sequence, the third
term is generated by summing the previous two term:
2 5 7 12 19 …

Open FibonacciSequence_p project from the Annex – Fibonacci Sequence folder and do the following:

● Read in the � rst two terms from the EditBoxes
● Create an OnClick event for the [Calculate] button to determine how many terms of the sequence must be

added together to give a sum just greater than 100.

IT-Practical-LB-Gr11.indb 232 2019/10/02 10:16

233ANNEXURE A.5 I Looping

Activity A.5 continued

● Display the terms that are used in the summation, the number of terms used and the sum of the terms.
● Save and run your project.

IT-Practical-LB-Gr11.indb 233 2019/10/02 10:16

234 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

ANNEXURE

A.6 Strings

Just like there are functions that are useful to perform on numbers, there are also functions that are
speci� cally useful to perform on strings. This section will look at how strings can be combined, compared
and manipulated.

COMBI NING STRINGS
The syntax to combine strings is straightforward, you simply add all the strings together:

sNew := String1 + String2 + … + String1000

This technique can be used to combine any number of strings. However, doing so without considering the
spaces of the combined strings can often result in one long word without any spaces.

FORMA TTING CHARACTERS
One way to ensure that your spacing is correct when combining strings is to make use of the tab and
newline characters. These symbols are described in the table below.

Table A.8: The Tab and Newline characters

NAME CODE DESCRIPTION EXAMPLE

Tab #9 Adds a � exible amount of space so that the
text following the tab is aligned to a speci� c
position in the component.

‘M1: ‘ + #9 + ‘71%’;

‘Average: ‘ + #9 + ‘85%;’

// M1: 71%

// Average: 85%

Newline #13 Adds a line break to the string so that the text
following the newline character appears on a
new line.

‘M1: 71%’ + #13 + ‘M2: 73%’;

// M1: 71%

// M2: 73%

To add the two formatting characters to a string, you use the plus operator to combine their character
values (including the hash symbol) to an existing string. Occasionally, it will be necessary to use more than
one tab character to align texts of different lengths. The only way to know if you have added the correct
number of tab characters is to test the application and see the result. It should immediately be visible if
you have added the incorrect number of tab characters.

Figure A.3: Incorrect and correct number of tab character

IT-Practical-LB-Gr11.indb 234 2019/10/02 10:16

235ANNEXURE A.6 I Strings

C OMPARING STRINGS
Conditional statements can be used to compare two or more strings. For example:

if sValue1 = sValue2 then
 Statement1;

Note:
● The comparison is not affected by length.
● The comparison is carried out on a letter by letter basis.
● The comparison is case sensitive.

In some applications you need to compare the length of two strings, rather that
the values of the strings. This is especially useful when doing string validation. To
� nd the length of a string, you can use the Length function, which returns an
integer value containing the number of characters:

sPassword := 'SuperSecretCode1';
iLength := Length(sPassword); // 16

This integer can then be used in a conditional statement:

if iLength >= 8 then
 Statement1;

 SCROLLING THROUGH A STRING
With square bracket syntax, you can read or write a speci� c character by placing
the number of the character in square brackets after the name of the string. The
following code snippet shows how this can be done.

Accessing characters in a string
sValue := 'Hello, World!';
cFirst := sValue[1]; // H
cSecond := sValue[2]; // e
sValue[13] := ‘?’; // sValue = 'Hello, World?'

Being able to access each of individual characters in a string allows you to
manipulate the string in a number of different ways:
● You can create conditional statements based on speci� c characters.
● You can copy certain characters.
● You can compare speci� c characters in different strings.
● You can assign new values to individual characters.
● You can delete individual characters.

Did you know

When a value is set for a
character in a string, the
existing character is
replaced by the new
character.

IT-Practical-LB-Gr11.indb 235 2019/10/02 10:16

236 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

In order to do most of these tasks, you need to combine the square bracket
notation with a FOR-loop that allows you to iterate through the string. To scroll
through each character in a string, your FOR-loop should run from the � rst
character in the string to the last character (given by the length of the string).

Iterating through a string
sPhrase := 'I love programming!';
iLength := Length(sPhrase);
for i := 1 to iLength do
 ShowMessage(sPhrase[i]);

 MANIPULATING STRINGS
Once you know how to scroll through a string, you can use this technique to
manipulate the string. The table below brie� y describes different ways in which
strings can be manipulated.

Table A.9: Ways in which strings can be manipulated

GOAL ALGORITHM DESCRIPTION

Finding a character Use a for-loop to scroll through a string sString. Compare
each character in the string to the search character. Once the
search character is found, return the value of the for-loop’s
counter as the position of the search character.

Replacing a character Use the � nding a character algorithm to � nd a speci� c
character. Once the character is found, use the for-loop’s
counter to set a new value for this character.

Deleting a character at
a speci� c position

Use a for-loop to scroll through a string. Add all the
characters before the delete position to sStart string, and all
the characters after the delete position to sEnd string.
Overwrite the input string by combining sStart and sEnd
strings.

Inserting a character Use a for-loop to scroll through a string sString. Add all the
characters before the insert position to sStart string, and all
the characters after the insert position (including the insert
position) to sEnd string. Overwrite the input string sString by
combining the sStart string, the new character, and the sEnd
string.

You will learn how to replace each of these algorithms with Delphi functions later
this year.

MANIPULATING
STRINGS IN DELPHI

https://www.youtube.com/
watch?v=t9oszMtEdQs

IT-Practical-LB-Gr11.indb 236 2019/10/02 10:16

237ANNEXURE A.6 I Strings

Activity A.6

A.6.1 Create algorithms for:
a. Finding a character sChar in sLine string.

b. Replacing a character in sLine string with a character sReplace.

A.6.2 Your South African ID number is a unique 13-digit number given to all South African citizens. This number is
used as your unique identi� er in all government databases and appears on your government identity document,
passport and driver’s license.

Each ID number uses the following format: YYMMDDSSSSCAZ.
● The � rst six digits (YYMMDD) are based on your date of birth. For example, if you were born on 23

December 2002, your � rst six digits would be 021223.
● The next four digits (SSSS) make a unique number between 0000 and 9999 used to distinguish between

people born on the same date. Numbers under 5 000 are given to women, while numbers equal to or above
5 000 are given to men.

● The next digit (C) is used to indicate if you are a South African citizen (0) or a permanent resident (1).
● The second last digit (A) was used to indicate a person’s race during apartheid, but today is always an 8.
● The � nal digit (Z) uses the Luhn algorithm to determine if all the previous numbers were entered correctly.

We will not look at the Luhn algorithm in this case study.
Open the IDValidator_p project from the Annex – ID Validator folder and do the following:

● Read the Birth date and ID Number for yourself
● Create an OnClick event for the Validate ID button to verify whether your ID number correctly shows your

birth date, gender and citizenship. Display an appropriate message.

IT-Practical-LB-Gr11.indb 237 2019/10/02 10:16

238 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Naming convention of components
ANNEXURE

B

 COMPONENT NAME PREFIX ICON BRIEF DESCRIPTION

Standard Group

Button btn Most used to activate an action.

Label lbl Commonly used to display information.

Edit edt Used for single line input, but also displays information.

Memo mem * Multiple line display organized in lines.

Panel pnl A container hosting other components.

ListBox lst Multiple line display. Able to display left aligned columns.

Radio Button rad Toggles selection.

Radio Group rgp Grouped Radio buttons – only one selectable.

ComboBox cmb Multiple line capturing. Selection of item through drop-down.

Check Box chk Toggles selection.

Main Menu mnu Main menu with submenus. Activates actions.

Additional Group

BitButton btt Button with icon - used to activate actions.

String Grid sgd Two dimensional grid with cells to capture text.

Image img Component to host pictures (bitmaps, jpgs).

Shape shp * Basic shape like circle, rectangle or ellipse.

Win32

RichEdit red Memo with RTF capabilities.

Page Control pgc Special page component hosting tab sheets.

Progress Bar prb * Rectangle capable indicating progress via growing colour bar.

Status Bar stb * A sub dividable bar at the bottom of form indicating status.

System Group

Timer tmr * Count down timer – initializing action as count-down reaches 0.

Samples Group

Spin Edit sed Integer input component with pre-set range to select from.

Calendar cld * Calendar with Month layout for selecting days.

IT-Practical-LB-Gr11.indb 238 2019/10/02 10:16

239ANNEXURE B I Naming convention of components

 COMPONENT NAME PREFIX ICON BRIEF DESCRIPTION

Data Access Group

DataSource dsr Component to connect data-aware component with dataset.

dbGo Group

ADOConnection con Component to connect with the database (Access).

ADOTable tbl Dataset component to re� ect the contents of a single table.

ADOQuery qry Dataset component to re� ect a result.

Data Controls Group

DBGrid dbg Data-aware component re� ecting the contents of a dataset.

DBNavigator dbn * Data-aware component interacting with a dataset.

DBText dbt * Data-aware EditBox re� ecting a � eld value from a record.

Form frm The initial Form – not categorised under any group.

IT-Practical-LB-Gr11.indb 239 2019/10/02 10:16

240 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

PROGRAMMING CHARACTERS

DECIMAL NUMBER CHARACTER NAME

0 NUL Null

1 SOH Start of Heading

2 STX Start of Text

3 ETX End of Text

4 EOT End of Transmission

5 ENQ Enquiry

6 ACK Acknowledgement

7 BEL Bell

8 BS Backspace

9 HT Horizontal Tab

10 LF Line Feed

11 VT Vertical Tab

12 FF Form Feed

13 CR Carriage Return

14 SO Shift Out

15 SI Shift In

16 DLE Data Link Escape

17 DC1 Device Control 1

18 DC2 Device Control 2

19 DC3 Device Control 3

20 DC4 Device Control 4

21 NAK Negative Acknowledgement

22 SYN Synchronous Idle

23 ETB End of Transmission Block

24 CAN Cancel

25 EM End of Medium

26 SUB Substitute

27 ESC Escape

28 FS File Separator

29 GS Group Separator

30 RS Record Separator

31 US Unit Separator

Programming and visible charactersC
ANNEXURE

IT-Practical-LB-Gr11.indb 240 2019/10/02 10:16

241ANNEXURE C I Programming and visible characters

The next 95 characters are all visible characters that you can see on the screen.

VISIBLE CHARACTERS

Decimal Character Decimal Character Decimal Character

32 SPACE 38 & 45 -

33 ! 39 ‘ 46 .

34 “ 40 (47 /

35 # 41) 48 0

36 $ 42 * 49 1

37 % 43 + 50 2

51 3 74 J 97 a

52 4 75 K 98 b

53 5 76 L 99 c

54 6 77 M 100 d

55 7 78 N 101 e

56 8 79 O 102 f

57 9 80 P 103 g

58 : 81 Q 104 h

59 ; 82 R 105 i

60 < 83 S 106 j

61 = 84 T 107 k

62 > 85 U 108 l

63 ? 86 V 109 m

64 @ 87 W 110 n

65 A 88 X 111 o

66 B 89 Y 112 p

67 C 90 Z 113 q

68 D 91 [114 r

69 E 92 \ 115 s

70 F 93] 116 t

71 G 94 ^ 117 u

72 H 95 _ 118 v

73 I 96 @ 119 w

120 x

121 y

IT-Practical-LB-Gr11.indb 241 2019/10/02 10:16

242 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

Decimal Character Decimal Character Decimal Character

122 z

123 {

124 |

125 |

126 ~

The 127th character is the DELETE character, which is used when something needs to be removed or
deleted.

To write the word ‘English’, a computer would thus receive the following values:

E n g l i s h

69 110 103 108 105 115 104

However, the computer would receive these characters as bytes. Can you calculate the 8-digit binary
numbers for each of these characters?

IT-Practical-LB-Gr11.indb 242 2019/10/02 10:16

243INFORMATION TECHNOLOGY I GRADE 11 I Practical Book I Glossary

Glossary

A

append to open an existing � le for writing, set the
� le pointer to the end of the � le and allows you
to add data to the � le

append to add an empty row to the end of your
database table

array is a data structure that store a set values
(elements) of the same type liked to a single
variable name

assume supposed to be the case, without proof

B

binary search is an algorithm used in computer
science to locate a speci� ed value (key) within
an array

bubble sort to compare adjacent elements

C

Caesar cipher a substitution cipher on which each
letter in plaintext is ‘shifted’ a certain number of
places down the alphabet

Ceil to round a real number up to the highest
integer value

CHR to return the corresponding character of an
ASCII code

circular dependency to cause an application to
crash

CompareText to compare two strings for equality,
ignoring case

concatenates to joins strings together into one
result string

conditional to put its condition � rst before
executing the looping back

D

data module a sealed, removable storage module
containing magnetic disks and their associated
access arms and read/write heads

DEC to decrement an ordinal type variable

decremental the act or process of decreasing or
becoming gradually less

Delete to delete a number of characters from a
string starting from a start position

delimiters to show the start and ends of individual
pieces of data

dynamic instantiation when a component or
object is created during run-time

E

encrypted message to encode information to
prevent anyone other than its intended recipient
from viewing it

end of � le <eof> to indicate the end of a � le when
the � le is saved

end of line <eoln> to indicate the end of the line
when the [Enter] button is pressed

Entity Relationship Diagram to show the
relationships of entity sets stored in a database

event an occurrence of something

exception is generally an error condition or event
that interrupts the � ow of your program

Exception Handling a way to prevent a program
from crashing when a � le does not exist

F

FileExists to determine whether a � le exists or not

� rst argument is a string that holds instructions
for formatting

Floor to round a real number down to the lowest
integer value

formal parameter to declare variable(s) next to the
procedure name

Frac to return the decimal part of a real number

function the operation of something in a particular
way

G

global is a programming language construct, a
variable that is declared outside and function
and is accessible to all the functions throughout
the program

H

homogenous elements of the same type

I

INC to increment the ordinal type variable passed
to it

incremental relating to or denoting an increase or
addition

independent to run on its own

index the position of the element in an array

inner loop the inner part of a nested loop

Insert to insert one string into another string

insert to add an empty row at the current position
of your database table

instance an example or single occurrence of
something

IT-Practical-LB-Gr11.indb 243 2019/10/02 10:16

244 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

instantiate represent as or by an instant

linear search is a process that checks every
element in the list sequentially until the
desired element is found

L

local variable variables that have a local scope

logical � le is a variable (in RAM) that points to
the physical � le on your storage medium

LowerCase to converts uppercase characters
in a string to lowercase

Luhn algorithm is a simple checksum formula
used t validate a variety of identi� cation
numbers, such as credit card numbers, IMEI
numbers, and Canadian Social Insurance
Numbers

M

method overloading to have more than one
method with the same name

method overloading to have more than one
method with the same name

method signature is the number of arguments
and their data type

method signature to name a method and its
formal parameters list

methods prede� ned instructions

N

naming convention to name things (generally
agreed scheme)

non-local is a variable that is not de� ned within
the local scope

null to represent an empty value

O

ORD to return the ordinal value of a character

outer loop the outer part of a nested loop

P

physical � le to name an external � le name
found on a storage device and contains the
actual data

Pi is a prede� ned constant that returns a real
number giving a useful approximation of the
value Pi

Pos to return to the start position of one string
within another string as an integer

post command to permanently save the values
to the database table

POWER to raise a base to a power and returns
a real answer

procedure an of� cial way of doing something

properties the components or building blocks

R

Random to generate a random number from 0
to less than 1

RandomRange to generate a random integer
number from Num1 to one less than Num2

related information information belonging in
the same group

Round to round a real number to an integer value

S

second argument holds the values that needs
to be converted into a formatted string

selection sort to select the element that should
go in each array position either in ascending
or descending order sequence

SETLENGTH to change the size of a string

sorted to sort an element in numerical order

SQRT to return the square root of a number

step through to step through means that you
are working through a program line by line

STR to convert an integer or real number into a
string, with optional basic formatting

T

Trunc to remove or chop off the decimal part of
the real number. It returns an integer after the
truncation

U

unambiguous not open to more than one
interpretation

Upcase to convert a single letter character to
uppercase

UpperCase to converts lowercase characters in
a string to uppercase

user-de� ned is methods written by
programmers themselves

VAL to convert a string to a numeric value

validate to try and lessen the number of
errors during the process of data input in
programming

value parameter when a procedure is called,
memory locations are created for each of
the formal parameters and the values of the
arguments are assigned to the corresponding
formal parameters. Changes made to a value
parameter will not affect its corresponding
argument. When the procedure is exited, the
memory locations of the formal parameters
‘die’ away

IT-Practical-LB-Gr11.indb 244 2019/10/02 10:16

245INFORMATION TECHNOLOGY I GRADE 11 I Practical Book I QR Code list

QR Code list

You can use the QR codes on these pages to link to online content for further
information on these topics.

Dear Learner
WHAT MOST SCHOOLS DON’T TEACH ... iv

Chapter 1
WHAT’S AN ALGORITHM? ... 2

Chapter 2
EXPLAINING BINARY NUMBERS ... 26

CONVERT DECIMAL TO HEXIDECIMAL .. 30

Chapter 3
DELPHI ARRAYS .. 42

Chapter 8
CONNECTING TO AN ACCESS DATABASE ... 176

WHAT’S AN ALGORITHM? ... 201

EXPLORING DELPHI COMPONENTS .. 206

LEARNING ABOUT VARIABLES ... 209

CONVERTING REAL NUMBERS TO STRINGS ... 210

MATH OPERATIONS .. 212

GLOBAL AND LOCAL VARIABLES .. 216

FOR LOOPING ... 225

FOR AND WHILE LOOPS .. 228

MANIPULATING STRINGS IN DELPHI ... 236

IT-Practical-LB-Gr11.indb 245 2019/10/02 10:16

246 INFORMATION TECHNOLOGY I GRADE 11 I Practical Book

ANNEXURES
Notes

IT-Practical-LB-Gr11.indb 246 2019/10/02 10:16

